Skip to main content

Magnetic Effects on Lower Organisms

  • Chapter
  • 93 Accesses

Abstract

Bacteria that orient and swim in a preferred direction in magnetic fields have been observed in diverse aquatic environments.1 These magnetotactic bacteria include a variety of morphologically distinct forms. Kalmijn and Blakemore2 found that these bacteria orient in uniform magnetic fields of about 0.5 G. Reversal of the geomagnetic field with Helmholtz coils caused the swimming bacteria to turn around in large U-turns and swim in the opposite direction. Killed bacteria also orient to align with imposed magnetic fields. Richard Blakemore

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakemore, R. P., 1975. Magnetotactic bacteria. Science 190:377–379.

    Article  ADS  Google Scholar 

  2. Kalmijn, A. J. and Blakemore, R. P., 1977. Geomagnetic orientation in marine mud bacteria. Proc. Intl. Union Physiol Sci. 13:364.

    Google Scholar 

  3. Kalmijn, A. J. and Blakemore, R. P., 1978. The magnetic behavior of mud bacteria. In Proceedings in life sciences, eds. K. Schmidt-König and W. T. Keeton, pp. 344–345. New York: Springer-Verlag.

    Google Scholar 

  4. Dijkgraaf, S. and Kalmijn, A. J.. 1962. Verhaltensversuche zur Funktion der Lorenzinischen Ampullen. Naturwissenschaften 49:400.

    Article  ADS  Google Scholar 

  5. Kalmijn, A. J., 1966. Electro-perception in sharks and rays. Nature (London) 212:1232–1233.

    Article  ADS  Google Scholar 

  6. Kalmijn, A. J., 1971. The electric sense of sharks and rays. J. Exp. Biol. 55:371–383.

    Google Scholar 

  7. Dijkgraaf, S. and Kalmijn, A. J., 1963. Untersuchungen über die Funktion der Lorenzinischen Ampullen an Haifischen. Z. Vergl. Physiol. 47:438–456.

    Article  Google Scholar 

  8. Kalmijn, A. J., 1974. The detection of electric fields from inanimate and animate sources other than electric organs. In Handbook of Sensory Physiology, ed. A. Fessard, Vol. III/3, pp. 147–200. New York: Springer-Verlag.

    Google Scholar 

  9. Kalmijn, A. J., Kolba, C. A. and Kalmijn, V., 1976. Orientation of catfish (Ictalurus nebulosus) in strictly uniform electric fields: I. Sensitivity of response. Bio. Bull. 151:415.

    Google Scholar 

  10. Kalmijn, A. J., 1972. Bioelectric fields in sea water and the function of the ampullae of Lorenzini in elasmobranch fishes. Scripps Institute of Oceanography Reference Series, Contribution No. 72–83, pp. 1–21. (English version of CNRS ZWO report, 1969.)

    Google Scholar 

  11. Kalmijn, A. J., 1977. The electric and magnetic sense of sharks, skates, and rays. Oeeanus 20:45–52.

    Google Scholar 

  12. Kalmijn, A. J., 1978. Electric and magnetic sensory world of sharks, skates, and rays. In Sensory biology of sharks, skates, and rays, eds. E. S. Hodgson and R. W. Mathewson, pp. 507–528. Arlington, Virginia: Office of Naval Research.

    Google Scholar 

  13. Faraday, M., 1832. Experimental researches in electricity. Philos. Trans. R. Soc. London 122:125–194.

    Article  Google Scholar 

  14. Von Arx, W. S., 1962. An introduction to physical oceanography. Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  15. Kalmijn, A. J., 1978. Experimental evidence of geomagnetic orientation in elasmobranch fishes. In Proceedings in life sciences, ed. K. Schmidt-König and W. T. Keeton, pp. 348–354. New York: Springer-Verlag.

    Google Scholar 

  16. Keeton, W. T., 1969. Orientation by pigeons: is the sun necessary? Science 165:922–928.

    Article  ADS  Google Scholar 

  17. Keeton, W. T., 1971. Magnets interfere with pigeon homing. Proc. Natl. Acad. Sci. USA 68:102–106.

    Article  ADS  Google Scholar 

  18. Walcott, C. and Green, R. P., 1974. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184:180–182.

    Article  ADS  Google Scholar 

  19. Wiltschko, W. and Wiltschko, R., 1972. Magnetic compass of European robins. Science 176:62–64.

    Article  ADS  Google Scholar 

  20. Wiltschko, W. and Wiltschko, R., 1975. The interaction of stars and magnetic field in the orientation system of night migrating birds. I. Autumn experiments with European warblers (Gen. Sylvia). Z. Tierpsychol. 37:337–355.

    Article  Google Scholar 

  21. Wiltschko, W. and Wiltschko, R., 1975. The interaction of stars and magnetic field in the orientation system of night migrating birds. II. Spring experiments with European robins (Erithacus nubecula). Z. Tierpsychol. 39:265–282.

    Google Scholar 

  22. Lindauer, M. and Martin, H., 1968. The earth’s magnetic field affects the orientation of honeybees in the gravity field. Z. Vergl. Physiol. 60:219–243.

    Article  Google Scholar 

  23. Martin, H. and Lindauer, M., 1977. The effect of the earth’s magnetic field on gravity orientation in the honeybee (Apis mellifica). J. Comp. Physiol. 122:145–187.

    Article  Google Scholar 

  24. Southern, W. E., 1972. Influence of disturbances in the earth’s magnetic field on ring-billed gull orientation. Condor 74:102–105.

    Article  Google Scholar 

  25. Moore, F. R., 1977. Geomagnetic disturbance and the orientation of nocturnally migrating birds. Science 196:682–684.

    Article  ADS  Google Scholar 

  26. Keeton, W. T., Larkin, T. S., and Windsor, D. M., 1974. Normal fluctuations in the earth’s magnetic field influence pigeon orientation. J. Comp. Physiol. 95:95–104.

    Article  Google Scholar 

  27. Larkin, T. S. and Keeton, W. T., 1976. Bar magnets mask the effect of normal magnetic disturbances on pigeon orientation. J. Comp. Physiol. 110:227–232.

    Article  Google Scholar 

  28. Larkin, R. P. and Sutherland, P. J., 1977. Migrating birds respond to Project Seafarer’s electromagnetic field. Science 195:777–779.

    ADS  Google Scholar 

  29. Kreithen, M. L. and Keeton, W. T., 1974. Attempts to condition homing pigeons to magnetic stimuli. J. Comp. Physiol. 91:335–362.

    Article  Google Scholar 

  30. Bookman, M. A., 1977. Sensitivity of the homing pigeon to an earth- strength magnetic field. Nature 267:340–342.

    Article  ADS  Google Scholar 

  31. Greenberg, B. and Ash, N., 1976. Metabolic rates in five animal populations after prolonged exposure to weak, extremely low frequency electromagnetic fields in nature. Radiai. Res. 67:252–265.

    Article  Google Scholar 

  32. Underbrink, A. G., Schairer, L. A., and Sparrow, A. H., 1973. Tradescantia stamcn hairs: a radiobiological test system applicable to chemical mutagenesis. In Chemical mutagens, principles and methods for their detection, ed. A. Hollaender, Vol. 3, pp. 171–207. New York: Plenum Press.

    Google Scholar 

  33. Underbrink, A. G., and Sparrow, A. H., 1974. Influence of experimental end points (dose, dose rate, neutron energy, nitrogen ions, hypoxia, chromosome volume and ploidy level) on RBE in Tradescantia stamen hairs and pollen. In Biological Effects of Neutron Radiation (Proceedings of the Symposium on the Effects of Neutron Irradiation Upon Cell Function; Munich, Germany, Oct. 22–26, 1973), pp. 185–214. Vienna: Intl. Atomic Energy Agency Publ. STI/PUB/352.

    Google Scholar 

  34. Schairer, L. A., Van’t Hof, J., Hayes, C. G., Burton, R. M., and de Serres, F. J., 1978. Exploratory monitoring of air pollutants for mutagenicity activity with the Tradescantia stamen hair system. Environmental Health Perspectives 27:51–60.

    Article  Google Scholar 

  35. Ma, T., Sparrow, A. H., Schairer, L. A., and Nauman, A. F., 1978. Effect of 1,2-dibromoethane (DBE) on meiotic chromosomes of Tradescantia. Mutation Research 58: 251–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Blakemore, R. et al. (1979). Magnetic Effects on Lower Organisms. In: Tenforde, T.S. (eds) Magnetic Field Effect on Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9143-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9143-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9145-0

  • Online ISBN: 978-1-4615-9143-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics