Skip to main content

The Role of Oxygen Radicals in Microbial Killing by Phagocytes

  • Chapter
Book cover Biochemistry and Metabolism

Abstract

Recognition of the possibility that phagocytes might employ oxygen radicals as microbicidal agents dates from the discovery by McCord and Fridovich (1969) of the superoxide dismutases, a nearly ubiquitous group of enzymes, which catalyze the destruction of the oxygen radical O — (superoxide) according to the reaction:

$$ 2{O_{{{{\dot{2}}^{ - }}}}} + 2H{}^{ + } \to {O_{2}} + {H_{2}}{O_{2}} $$

The presence of one or more of these enzymes in virtually every living organism implies an indispensable role for superoxide dismutase in living systems, and from the nature of the dismutase-catalyzed reaction it may be inferred that this role is to protect such systems against fatal damage by O- and its chemical descendants. The initial evidence supporting this assertion—namely, the reported absence of superoxide dismutase from obligate anaerobes (McCord et al., 1971)—has now been found to be incorrect, since newer and more sensitive methods for measuring the activity of the enzyme have shown it to be present, albeit in low concentrations, in Clostridia and other species which are killed by oxygen (Lumsden and Hall, 1975; Hewitt and Morris, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. C., Stjernholm, R. L., and Steele, R. H., 1972, Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochem. Biophys. Res. Comm. 47:679.

    Article  PubMed  CAS  Google Scholar 

  • Altman, K. I., 1973, Radiation chemistry, in: Medical Radiation Biology (G. V. Dalrymple, M. E. Gaulden, G. M. Kollamorgen, and H. H. Vogel, eds.), p. 15, Saunders, Philadelphia.

    Google Scholar 

  • Babior, B. M., 1978, Oxygen-dependent microbial killing by phagocytes, N. Engl. J. Med. 298:659, 721.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B. M., and Kipnes, R. S., 1977, Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement, Blood 50:517.

    PubMed  CAS  Google Scholar 

  • Babior, B. M., Kipnes, R. S., and Curnutte, J. T., 1973, Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B. M., Curnutte, J. T., and Kipnes, R. S., 1975, Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase, J. Lab. Clin. Med. 85:235.

    PubMed  CAS  Google Scholar 

  • Babior, B. M., Curnutte, J. T., and McMurrich, B. J., 1976, The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst, J. Clin. Invest. 58:989.

    Article  PubMed  CAS  Google Scholar 

  • Baehner, R. L., and Nathan, D. G., 1967, Leukocyte oxidase: Defective activity in chronic granulomatous disease, Science 155:835.

    Article  PubMed  CAS  Google Scholar 

  • Baehner, R. L., Johnston, R. B., Jr., and Nathan, D. G., 1972, Comparative study of the metabolic and bactericidal characteristics of severely glucose-6-phosphate dehydrogenase deficient polymorphonuclear leukocytes and leukocytes from children with chronic granulomatous disease, J. Reticuloendothel. Soc. 12:150.

    PubMed  CAS  Google Scholar 

  • Bainton, D. F., and Farquhar, M. G., 1968, Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells, J. Cell Biol. 39:299.

    Article  PubMed  CAS  Google Scholar 

  • Baldridge, C. W., and Gerard, R. W., 1933. The extra respiration of phagocytosis, Am. J. Physiol. 103:235.

    CAS  Google Scholar 

  • Beauchamp, C., and Fridovich, I., 1970, A mechanism for the production of ethylene from methional. The generation of hydroxyl radical by xanthine oxidase, J. Biol. Chem. 245:4641.

    PubMed  CAS  Google Scholar 

  • Berendes, H., Bridges, R. A., and Good, R. A., 1957, Fatal granulomatosis of childhood. Clinical study of a new syndrome, Minn. Med. 40:309.

    PubMed  CAS  Google Scholar 

  • Beukers, R., and Berends, W., 1961, The effects of UV-irradiation on nucleic acids and their components, Biochem. Biophys. Acta 49:181.

    Article  CAS  Google Scholar 

  • Cheson, B. D., Christensen, R. L., Sperling, R., Kohler, B. E., and Babior, B. M., 1976, The origin of the chemiluminescense of phagocytosing granulocytes, J. Clin. Invest. 58:789.

    Article  PubMed  CAS  Google Scholar 

  • Cheson, B. D., Curnutte, J. T., and Babior, B. M., 1977, The oxidative killing mechanisms of the neutrophils, Prog. Clin. Immunol. 3:1.

    PubMed  CAS  Google Scholar 

  • Cone, R., Hasan, S. K., Lown, J. W., and Morgan, A. R., 1976, The mechanism of the degradation of DNA by streptonigrin, Can. J. Biochem. 54:219.

    Article  PubMed  CAS  Google Scholar 

  • Curnutte, J. T. J. T., Whitten, D. M., and Babior, B. M., 1974, Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N. Engl. J. Med. 290:593.

    Article  PubMed  CAS  Google Scholar 

  • Curnutte, J. T. Kipnes, R. S., and Babior, B. M., 1975, Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease, N. Engl. J. Med. 293:628.

    Article  PubMed  CAS  Google Scholar 

  • Curnutte, J. T., Karnovsky, M. L., and Babior, B. M., 1976, Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement, J. Clin. Invest. 57:1059.

    Article  PubMed  CAS  Google Scholar 

  • Dorfman, L. M., and Adams, G. E., 1973, Reactivity of the hydroxyl radical in aqueous solutions, NSRDS-NBS No. 46, U.S. Dept. of Comm. Natl. Bur. of Stand., pp. 4–6.

    Google Scholar 

  • Drath, D. B., and Karnovsky, M. L., 1974, Bactericidal activity of metal-mediated peroxide-ascorbate systems, Infect. Immun. 10:1077.

    PubMed  CAS  Google Scholar 

  • Drath, D. B., and Karnovsky, M. L., 1975, Superoxide production by phagocytic leukocytes, J. Exp. Med. 141:257.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, A., and Agner, K., 1958, The molecular weight of myeloperoxidase, Acta Chem. Scand. 12:95.

    Article  CAS  Google Scholar 

  • Fridovich, I., and Handler, P., 1962, Xanthine oxidase. V. Differential inhibition of the reduction of various electron acceptors, J. Biol. Chem. 237:916.

    PubMed  CAS  Google Scholar 

  • Gill, D. M., Pappenheimer, A. M., Brown, R., and Kurnick, J. T., 1969, Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts, J. Exp. Med. 129:1.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, I. M., Roos, D., Kaplan, H. B., and Weissman, G., 1975, Complement and immunoglobulins stimulate superoxide production by human neutrophils independently of phagocytosis, J. Clin. Invest. 56:1155.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, J., and Hochstein, P., 1977, Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin, Biochem. Biophys. Res. Comm. 77:797.

    Article  PubMed  CAS  Google Scholar 

  • Gray, G. R., Stomatoyannopoulos, G., Naiman, S. C., Kilman, N. R., Klebanoff, S. J., Austin, T., Yoshida, A., and Robinson, G. C. F., 1973, Neutrophil dysfunction, chronic granulomatous disease, and nonspherocytic hemolytic anemia caused by complete deficiency of glucose-6-phosphate dehydrogenase, Lancet 2:530.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. E., and Pauli, R., 1943, The antibacterial action of the xanthine oxidase system, Proc. Soc. Exp. Biol. Med. 54:148.

    CAS  Google Scholar 

  • Gregory, E. M., and Fridovich, I., 1973, Oxygen toxicity and superoxide dismutase, J. Bacteriol. 114:1193.

    CAS  Google Scholar 

  • Gregory, E. M., and Fridovich, I., 1974, Oxygen metabolism in Lactobacillus plantarum, J. Bacteriol. 117:166.

    PubMed  CAS  Google Scholar 

  • Gregory, E. M., Yost, F. J., Jr., and Fridovich, I., 1973, Superoxide dismutases of Escherichia coli: Intracellular localization and functions, J. Bacteriol. 115:987.

    PubMed  CAS  Google Scholar 

  • Haber, F., and Weiss, J., 1934, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Edinburgh Sect. A 147:332.

    Article  CAS  Google Scholar 

  • Halliwell, B., 1976, An attempt to demonstrate a reaction between superoxide and hydrogen peroxide, FEBS Lett. 72:8.

    Article  PubMed  CAS  Google Scholar 

  • Hassan, H. M., and Fridovich, I., 1977, Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Excherichia coli, J. Bacteriol. 129:1574.

    PubMed  CAS  Google Scholar 

  • Hewitt, J., and Morris, J. G., 1975, Superoxide dismutase in some obligately anaerobic bacteria, FEBS Lett. 50:315.

    PubMed  CAS  Google Scholar 

  • Hochstein, P., Laszlo, J., and Miller, D., 1965, A unique, dicoumarol-sensitive, nonphosphorylating oxidation of DPNH and TPNH catalyzed by streptonigrin, Biochem. Biophys. Res. Comm. 19:289.

    Article  PubMed  CAS  Google Scholar 

  • Hohn, D. C., and Lehrer, R. I., 1975, NADPH oxidase deficiency in X-linked chronic granulomatous disease, J. Clin. Invest. 55:707.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, G. Y. N., Islam, M. F., and Quastel, J. H., 1961, Biochemical aspects of phagocytosis, Nature 192:535.

    Article  CAS  Google Scholar 

  • Johnston, R. B., Jr., and Baehner, R. L., 1970, Improvement of leukocyte bactericidal activity in chronic granulomatous disease, Blood 35:350.

    PubMed  Google Scholar 

  • Johnston, R. B., Jr., Keele, B. B., Jr., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L., and Rajagopalan, K. V., 1975, The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes, J. Clin. Invest. 55:1357.

    Article  PubMed  CAS  Google Scholar 

  • Kedinger, C., Gniazdowski, M., Mandel, J. L., Gissinger, F., and Chambon, P., 1970, α-Amanitin: A specific inhibitor of one of two DNA-dependent RNA polymerase activities from calf thymus, Biochem. Biophys. Res. Comm. 38:165.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, E. W., and Fridovich, I., 1975, Superoxide, hydrogen peroxide, and singlet oxygen in lipid preoxidation by a xanthine oxidase system, J. Biol. Chem. 250:8812.

    PubMed  CAS  Google Scholar 

  • Kahn, A. U. 1970. Singlet molecular oxygen from superoxide anion and sensitized fluorescence of organic molecules, Science 168:476.

    Article  Google Scholar 

  • Klebanoff, S. J., 1967a, A peroxidase-mediated antimicrobial system in leukocytes, J. Clin. Invest. 46:1078.

    Google Scholar 

  • Klebanoff, S. J., 1967b, Iodination of bacteria: A bactericidal mechanism, J. Exp. Med. 126:1063.

    Article  CAS  Google Scholar 

  • Klebanoff, S. J., 1968, Myeloperoxidase-halide-hydrogen peroxide antibacterial system, J. Bacteriol. 95:2131.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., 1970, Myeloperoxidase: Contribution to the microbicidal activity of intact leukocytes, Science 169:1095.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., 1975, Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes, Semin. Hematol. 12:117.

    PubMed  CAS  Google Scholar 

  • Klingenberg, M., 1970, Mitochondria metabolite transport, FEBS Lett. 6:145.

    Article  PubMed  CAS  Google Scholar 

  • Krinsky, N. I., 1974, Singlet excited oxygen as a mediator of the antibacterial action of leukocytes, Science 186:363.

    Article  PubMed  CAS  Google Scholar 

  • Lavelle, F., Michelson, A. M., and Dimitrijevic, L., 1973, Biologodal protection by superoxide dismutase, Biochem. Biophys. Res. Comm. 55:350.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R. I., and Cline, M. J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection, J. Clin. Invest. 48:1478.

    Article  PubMed  CAS  Google Scholar 

  • Lown, J. W., and Sim, S. K., 1976, Studies related to antitumor antibiotics. Part VIII. Cleavage of DNA by streptonigrin analogues and the relationship to antineoplastic activity, Can. J. Biochem. 54:446.

    Article  PubMed  CAS  Google Scholar 

  • Lown, J. W., Begleiter, A., Johnson, D., and Morgan, A. R., 1976, Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay, Can. J. Biochem. 54:110.

    Article  PubMed  CAS  Google Scholar 

  • Lown, J. W., Sim, S. K., Majumdar, K. C., and Chang, R. Y., 1977, Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents, Biochem. Biophys. Res. Comm. 76:705.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden, J., and Hall, D. O., 1975, Superoxide dismutase in photosynthetic organisms provides an evolutionary hypothesis, Nature 257:670.

    Article  PubMed  CAS  Google Scholar 

  • Mandell, G. L., and Hook, E. W., 1969a, Leukocyte bactericidal activity in chronic granulomatous disease: Correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing, J. Bacteriol. 100:531.

    CAS  Google Scholar 

  • Mandell, G. L., and Hook, E. W., 1969b, Leukocyte function in chronic granulomatous disease of childhood. Studies on a seventeen year old boy, Am. J. Med. 47:473.

    Article  CAS  Google Scholar 

  • McCord, J. M., and Fridovich, I., 1969, Superoxide dismutase, an enzymatic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244:6049.

    PubMed  CAS  Google Scholar 

  • McCord, J. M., Keele, B. B., Jr., and Fridovich, I., 1971, An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase, Proc. Natl. Acad. Sci. USA 68:1024.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J. M., Beauchamp, C.O., Goscin, S., Misra, H. P., and Fridovich, I. Superoxide and superoxide dismutase, 1973, in: Oxidases and Related Redox Systems, Vol. 1 (T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 51–76. University Park Press, Baltimore.

    Google Scholar 

  • McRipley, R. J., and Sbarra, A. J., 1967, Role of the phagocyte in host-parasite interactions. XII. Hydrogen peroxide-myeloperoxidase bactericidal system in the phagocyte, J. Bacteriol. 94:1425.

    PubMed  CAS  Google Scholar 

  • Michelson, A. M., and Buckingham, M. E., 1974, Effects of superoxide radicals on myoblast growth and differentiation, Biochem. Biophys. Res. Comm. 58:1079.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, N. S., and Gilboe, D. P., 1970, Bindings of streptonigrin to DNA, Biochim. Biophys. Acta 224:319.

    Article  PubMed  CAS  Google Scholar 

  • Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F., and Romeo, D., 1971, Enzymatic basis of metabolic stimulation in leukocytes during phagocytosis: The role of activated NADPH oxidase, Arch. Biochem. Biophys. 145:255.

    Article  PubMed  CAS  Google Scholar 

  • Patriarca, P., Cramer, R., Tedesco, F., and Kakinuma, K., 1975a, Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. H. Presence of the NADPH2 oxidizing activity in a myeloperoxidase-deficient subject, Biochim. Biophys. Acta 385:387.

    Article  CAS  Google Scholar 

  • Patriarca, P., Dri, P., Kakinuma, K., Tedesco, F., and Rossi, F., 1975b, Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2, Biochim. Biophys. Acta 385:380.

    Article  CAS  Google Scholar 

  • Petkau, A., and Chelack, W. S., 1976, Radioprotective effect of superoxide dismutase on model phospholipid membranes, Biochim. Biophys. Acta 433:445.

    Article  PubMed  CAS  Google Scholar 

  • Pincus, S. H., and Klebanoff, S. J., 1971, Quantitative leukocyte iodination, N. Engl. J. Med. 284:744.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K. N., 1974, Human Radiation Biology, Harper and Row, New York, pp. 149–190.

    Google Scholar 

  • Pressman, B. C., 1976, Biological applications of ionophores, Annu. Rev. Biochem. 45:501.

    Article  PubMed  CAS  Google Scholar 

  • Pryor, W. A., 1978, The formation of free radicals and the consequences of their reactions in vivo, Photochem. Photobiol. 28:787.

    Article  CAS  Google Scholar 

  • Pryor, W. A., and Tang, R. H., 1978, Ethylene formation from methional, Biochem. Biophys. Res. Comm. 81:498.

    Article  PubMed  CAS  Google Scholar 

  • Quie, P. G., White, J. G., Holmes, B., and Good, R. A., 1967, In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood, J. Clin. Invest. 46:668.

    Article  PubMed  CAS  Google Scholar 

  • Rao, K. V., Biemann, K., and Woodward, R. B., 1963, The structure of streptonigrin, J. Am. Chem. Soc. 85:2532.

    Article  CAS  Google Scholar 

  • Reed, P. W., 1969, Glutathione and the hexosemonophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes, J. Biol. Chem. 244:2459.

    PubMed  CAS  Google Scholar 

  • Root, R. K., and Metcalf, J. A., 1977, H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2. Studies with normal and cytochalasin B treated cells, J. Clin. Invest. 60:1266.

    Article  PubMed  CAS  Google Scholar 

  • Sausville, E. A., Peisach, J., and Horwitz, S. B., 1976, A role for ferrous ion and oxygen in the degradation of DNA by bleomycin, Biochem. Biophys. Res. Comm. 73:814.

    Article  PubMed  CAS  Google Scholar 

  • Sayre, J. W., and Kaymakcalan, S., 1964, Cyanide poisoning from apricot seeds among children in Central Turkey, N. Engl. J. Med. 270:1113.

    Article  PubMed  CAS  Google Scholar 

  • Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234:1355.

    PubMed  CAS  Google Scholar 

  • Selinger, H. H., 1960, A photeolectric method for the measurement of spectra of light sources of rapidly varying intensities, Anal. Biochem. 1:60.

    Article  Google Scholar 

  • Shohet, S. B., Pitt, J., Baehner, R. L., and Poplack, D. G., 1974, Lipid peroxidation in the killing of phagocytized pneumococci, Infect Immun. 19:1321.

    Google Scholar 

  • Stendahl, O., and Lindgren, S., 1976, Function of granulocytes with deficient myeloperoxidase-mediated iodination in a patient with generalized pustular psoriasis, Scand. J. Haematol. 16:144.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, J. B., and Autor, A. P., 1977, Induction of superoxide dismutase by oxygen in neonatal rat lung, J. Biol. Chem. 232:3509.

    Google Scholar 

  • Stossel, T. P., Mason, R. J., and Smith, A. L., 1974, Lipid peroxidation by human blood phagocytes, J. Clin. Invest. 54:638.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, R. R., Paul, B. B., Jacobs, A. A., and Sbarra, A. J., 1971, Role of the phagocyte in host-parasite interactions. XXVII. Myeloperoxidase-H2O2-Cl--mediated aldehyde formation and its relationship to antimicrobial activity, Infect. Immun. 3:595.

    PubMed  CAS  Google Scholar 

  • Tauber, A. I., and Babior, B. M., 1977, Evidence for hydroxyl radical production by human neutrophils, J. Clin. Invest. 60:374.

    Article  PubMed  CAS  Google Scholar 

  • van Hemmen, J. J., and Meuling, W. J. A., 1975, Inactivation of biologically active DNA by y-ray-induced superoxide radicals and their dismutation products, singlet molecular oxygen and hydrogen peroxide, Biochim. Biophys. Acta 402:133.

    Article  PubMed  Google Scholar 

  • Weening, R. S., Wever, R., and Roos, D., 1975, Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes, J. Lab. Clin. Med. 85:245.

    PubMed  CAS  Google Scholar 

  • Weiss, S. J., King, G. W., and LoBuglio, A. F., 1977, Evidence for hydroxyl radical generation by human monocytes, J. Clin. Invest. 60:370.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, S. J., Rustagi, P. K., and LoBuglio, A. F., 1978, Human granulocyte generation of hydroxyl radical, J. Exp. Med. 147:316.

    Article  PubMed  CAS  Google Scholar 

  • White, H. L., and White, J. R., 1966, Interaction of streptonigrin with DNA in vitro, Biochim. Biophys. Acta 132:648.

    Google Scholar 

  • White, H. L., and White, J. R., 1968, Lethal action and metabolic effects of streptonigrin on Escherichia coli, Mol. Pharmacol. 4:549.

    PubMed  CAS  Google Scholar 

  • White, J. R., and Dearman, H. H., 1965, Generation of free radicals from phenazine methosulfate, streptonigrin and rubiflavin in bacterial suspensions, Proc. Natl. Acad. Sci. USA 54:887.

    Article  PubMed  CAS  Google Scholar 

  • Zgliczynski, J. M., Stelmaszynska, T., Ostrowski, W., Naskalski, J., and Sznajd, J., 1968, Myeloperoxidase of human leukaemic leukocytes. Oxidation of amino acids in the presence of hydrogen peroxide, Eur. J. Biochem. 4:540.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Babior, B.M. (1980). The Role of Oxygen Radicals in Microbial Killing by Phagocytes. In: Sbarra, A.J., Strauss, R.R. (eds) Biochemistry and Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9134-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9134-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9136-8

  • Online ISBN: 978-1-4615-9134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics