Skip to main content

Salamanders and the Evolution of the Major Histocompatibility Complex

  • Chapter
Book cover Contemporary Topics in Immunobiology

Part of the book series: Contemporary Topics in Immunobiology ((CTI,volume 9))

Abstract

All species of eutherian mammals and birds that have been systematically investigated possess one homologous system of closely linked gene loci that is intimately involved with the immune responses of that species (Götze, 1977). This gene cluster is called the major histocompatibility complex, or MHC. Products of genes within this complex induce differentiation of T cells, as measured by blast-cell transformation, clonal expansion, and the development of cytotoxic effectors. MHC gene products also induce B-cell differentiation, resulting in antibody production. Recently, the MHC has been recognized to be intimately involved in the recognition of a multiplicity of non-self antigenic determinants, with the acquisition of the T-cell repertoire, and with the cooperative interactions between subsets of T cells, between T and B cells, between lymphocytes and macrophages, and between cytotoxic effectors and their specific targets (Möller, 1978). Finally, constituent loci of the MHC are involved, either structurally or in some regulatory fashion, in the biosynthesis and activation of at least some components of the complement system (Meo et al., 1975; Lachman and Hobart, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bach, F. H., and Hirschhorn, K., 1964, Lymphocyte interaction: a potential histocompatibility test in vitro, Science 142: 813.

    Article  Google Scholar 

  • Bach, F. H., Kuperman, O. J., Sollinger, H. W., Zarling, J. M., Sondel, P. M., Alter, B. J., and Bach, M. L., 1977, Cellular immunogenetics and LD-CD collaboration, Transpl. Proc. 9: 859.

    CAS  Google Scholar 

  • Baldwin, W. M. III, and Cohen, N., 1972, Immunosuppression of subacute skin allograft rejection in the newt Diemictylus v. dorsalis by alloantigenic pretreatment with kidney and liver implants, Folia Biol. 18: 181.

    Google Scholar 

  • Barnstable, C. J., Jones, E. A., and Crumpton, M. J., 1978, Isolation, structure, and genetics of HLA-A,-B,-C and-DRW (Ia) antigens, Br. Med. Bull. 34: 241.

    PubMed  CAS  Google Scholar 

  • Charlemagne, J., and Tournefier, A., 1974, Obtention of histocompatible strains in the urodele Pleurodeles waltlii Michah (Salamandridae), J. Immunogenet. 1: 125.

    Google Scholar 

  • Cohen, N., 1968, Chronic skin graft rejection in the Urodela. I. A comparative study of first-and second-set allograft reactions, J. Exp. Zool. 167: 37.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, N., 1969a, Chronic skin graft rejection in the Urodela. II. A comparative study of xenograft rejection, Transplantation 7:332.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, N., 1969b, Immunogenetic and developmental aspects of tissue transplantation immunity in urodele amphibians, in: Biology of Amphibian Tumors: Recent Results in Cancer Research (M. Mizell, ed.), pp. 153–168, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Cohen, N., 1911a, Amphibian transplantation reactions: A review, Am. Zool. 11: 193.

    Google Scholar 

  • Cohen, N., 1971b, Reptiles as models for the study of immunity and its phylogenesis, J. Am. Vet. Med. Assoc. 159: 1662.

    PubMed  CAS  Google Scholar 

  • Cohen, N., 1973, Predictable variability in the response of two newt subspecies (D. v. viridescens and D. v. dorsalis) to first-set allografts, Folia Biol. 19: 169.

    CAS  Google Scholar 

  • Cohen, N., 1976, Phylogeny of the major histocompatibility complex: theoretical implications of studies with urodele amphibians, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 169–182, Elsevier North-Holland, Amsterdam.

    Google Scholar 

  • Cohen, N., 1979, Evolution of the major histocompatibility complex in vertebrates: A saga of convergent gene evolution? Transplant. Proc. 11: 1118.

    PubMed  CAS  Google Scholar 

  • Cohen, N., and Collins, N. H., 1977, Major and minor histocompatibility systems of ectothermic vertebrates, in: The Major Histocompatibility System in Man and Animal (D. Götze, ed.), Springer-Verlag, Berlin.

    Google Scholar 

  • Cohen, N., and Hildemann, W. H., 1968, Population studies of allograft rejection in the newt, Diemictylus viridescens, Transplantation 6: 208.

    Article  CAS  Google Scholar 

  • Cohen, N., and Horan, M., 1977, Lack of correlation between rapidity of newt allograft rejection and the frequency and magnitude of stimulation in the mixed lymphocyte reaction, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 259–266, Elsevier North-Holland, Amsterdam.

    Google Scholar 

  • Cohen, N., and Rich, L. C., 1970, Exceptionally prolonged survival of allogeneic heart implants in untreated and previously skin grafted salamanders, Am. Zool. 10: 536.

    Google Scholar 

  • Cohen, N., Baldwin, W. M. III, and Manickavel, V., 1975, Phylogeny of functional humoral transplantation immunity: Comparative studies in amphibians and rodents, Adv. Exp. Med. Biol. 64: 411.

    PubMed  CAS  Google Scholar 

  • Colley, D. G., and DeWitt, C. W., 1969, Mixed lymphocyte blastogenesis in response to multiple histocompatibility antigens, J. Immunol. 102: 107.

    PubMed  CAS  Google Scholar 

  • Collins, N. H., 1976, Mitogenic and mixed lymphocyte culture reactivities of lymphoid cells from three urodele species: Perspectives on the evolution of immunity, Ph.D. thesis, University of Rochester, Rochester, N.Y.

    Google Scholar 

  • Collins, N. H., and Cohen, N., 1976, Phylogeny of immunocompetent cells. II. In vitro behavior of lymphocytes from the spleen, blood and thymus of the urodele, Ambystoma mexicanum, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 143–152, Elsevier North-Holland, Amsterdam.

    Google Scholar 

  • Cooper, E. L., 1976, Comparative Immunology, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Cramer, C.V., Shonnard, J. W., and Gill, T. J. III, 1974, Genetic studies in inbred rats. II. Relationship between the major histocompatibility complex and mixed lymphocyte reactivity, J. Immunogen. 1: 421.

    Article  Google Scholar 

  • Cuchens, M. A., and Clem, L. W., 1979, Phylogeny of lymphocyte heterogeneity. III. Mitogenic responses of reptilian lymphocytes, Dev. Comp. Immunol. 3: 287.

    Article  PubMed  CAS  Google Scholar 

  • DeLanney, L. E., 1978, Immunogenetic profile of the axolotl: 1977, Am. Zool. 18: 289.

    Google Scholar 

  • DeLanney, L. E., and Blackler, K., 1969, Acceptance and regression of a strain specific lymphosarcoma in Mexican axolotls, in: Biology of Amphibian Tumors: Recent Results in Cancer Research (M. Mizell, ed.), pp. 399–408, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • DeLanney, L. E., Collins, N. H., Cohen, N., and Reid, R., 1975, Transplantation immunogenetics and MLC reactivities of partially inbred strains of salamanders (A. mexicanum): Preliminary studies, Adv. Exp. Biol. Med. 64: 315.

    CAS  Google Scholar 

  • Démant, P., 1973, H-2 gene complex and its role in alloimmune reactions, Transpl. Proc. 15: 162.

    Google Scholar 

  • Du Pasquier, L., 1974, The genetic control of histocompatibility reactions: phylogenetic aspects, Arch. Biol. 85: 91.

    Google Scholar 

  • Du Pasquier, L., Chardonnens, X., and Miggiano, V. C., 1975, A major histocompatibility complex in the toad, Xenopus laevis (Daudin), Immunogenetics 1: 482.

    Article  Google Scholar 

  • Du Pasquier, L., Miggiano, V. C., Kobel, H. R., and Fischberg, M., 1977, The genetic control of histocompatibility reactions in natural and laboratory-made polyploid individuals of the clawed toad Xenopus, Immunogenetics 5: 129.

    Article  Google Scholar 

  • Dutton, R. W., 1966, Spleen cell proliferation in response to homologous antigen: Studies in congenic resistant strains of mice, J. Exp. Med. 123: 665.

    Article  PubMed  CAS  Google Scholar 

  • Festenstein, H., 1976, The Mls system, Transpl. Proc. 8: 339.

    CAS  Google Scholar 

  • Festenstein, H., Bishop, C., and Tanlon, B. A., 1977, Location of Mls locus on mouse chromosome 1, Immunogenetics 5: 357.

    Article  Google Scholar 

  • Galton, M., 1967, Factors involved in the rejection of skin transplanted across a weak histocompatibility barrier: gene dosage, sex of recipient, and nature of expression of histoeompatibility genes, Transplantation 5: 154.

    Article  Google Scholar 

  • Götze, D., 1977, The Major Histoeompatibility System in Man and Animals, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Graff, R. J., and Bailey, D. W., 1973, The non-H-2 histoeompatibility loci and their antigens, Transpl. Rev. 15: 26.

    CAS  Google Scholar 

  • Graff, R. J., Silvers, W. K., Billingham, R. E., Hildemann, W. H., and Snell, G. D., 1966, The cumulative effect of histoeompatibility antigens, Transplantation 4: 605.

    Article  PubMed  CAS  Google Scholar 

  • Hailparn, E., and Cohen, N., 1977, Allograft rejection alters the kinetics and magnitude of the mixed lymphocyte reaction in Xenopus laevis, Am. Zool. 17: 892.

    Google Scholar 

  • Häyry, P., and Defendi, V., 1970, Allograft immunity in vitro. II. Induction of DNA-synthesis in mixed cultures of mouse peripheral lymphocytes from inbred strains differing at non-H-2 loci, Transplantation 9:410.

    Google Scholar 

  • Hildemann, W. H., 1970, Components and concepts of antigenic strength, Transpl. Rev. 3:5.

    Google Scholar 

  • Hildemann, W. H., and Haas, R., 1961, Histoeompatibility genetics of bullfrog populations, Evolution 15: 267.

    Article  Google Scholar 

  • Houdayer, M., and Fougereau, M., 1972, Phylogénie des immunoglobulines: La réaction immunitaire de l’axolotl, Ambystoma mexicanum. Cinétique de la réponse immunitaire et caractérisation des anticorps, Ann. Inst. Pasteur 123: 4.

    Google Scholar 

  • Jonker, M., Hoogeboom, J., van Leeuwen, A., Koch, C. T., van Oud Alblas, D. B., and van Rood, J. J., 1979a, The influence of matching for HLA-DR antigens on skin graft survival, Transplantation in press.

    Google Scholar 

  • Jonker, M., Hoogeboom, J., van Leeuwen, A., Koch, C. T., van Oud Alblas, D. B., Persijn, G., Frederiks, E., and van Rood, J. J., 1979b, Experimental skin grafting in man, Transpl. Proc. 11: 607.

    CAS  Google Scholar 

  • Klein, J., 1977, Evolution and function of the major histoeompatibility system: facts and speculations, in: The Major Histoeompatibility System in Man and Animals (D. Götze, ed.), pp. 339–378, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Klein, J., 1979, The major histoeompatibility complex of the mouse, Science 203: 516.

    Article  PubMed  CAS  Google Scholar 

  • Kobel, H. R., and Du Pasquier, L., 1977, Strains and species of Xenopus for immunological research, in Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 299–306, Elsevier North-Holland, Amsterdam.

    Google Scholar 

  • Lachman, P. J., and Hobart, M. J., 1978, Complement genetics in relation to HLA, Br. Med. Bull. 134: 247.

    Google Scholar 

  • Lapp, W. S., and Bliss, J. Q., 1967, The effects of allelic dosage and graft size on skin graft survival across a weak histoeompatibility barrier, Immunology 12: 103.

    PubMed  CAS  Google Scholar 

  • Litchfield, J. T., Jr., 1949, A method for rapid graphic solution of time per cent effect curves, J. Pharm. Exp. Ther. 97: 399.

    Google Scholar 

  • Mangi, R. J., and Mardiney, M. R., Jr., 1971, The mixed lymphocyte reaction: Detection of single histoeompatibility loci and the correlation to skin graft survival in mice, Transplantation 11: 369.

    Article  PubMed  CAS  Google Scholar 

  • Manickavel, V., and Cohen, N., 1975, Does chronic rejection elicited by weak histocompatibility antigens in mice and salamanders result from active enhancement? Transpl. Proc. 7: 451.

    Google Scholar 

  • Manning, M. J., and Turner, R. J., 1976, Comparative Immunobiology, Blackie and Sons, Glasgow.

    Google Scholar 

  • Marchalonis, J. J., 1977, Immunity in Evolution, Edward Arnold Ltd., London.

    Google Scholar 

  • Marchalonis, J. J., and Cohen, N., 1973, Isolation and partial characterization of immunoglobulin from a urodele amphibian (Necturus maculosus), Immunology 24: 395.

    PubMed  CAS  Google Scholar 

  • Meo, T., Krasteff, T., and Shreffler, D. C., 1975, Immunochemical characterization of murine H-2 controlled Ss protein through the identification of its human homologue as the fourth component of complement, Proc. Natl. Acad. Sci. USA 72: 4536.

    Article  PubMed  CAS  Google Scholar 

  • Miggiano, V. C., Birgen, F., and Pink, J. R. L., 1974, The mixed leukocyte reaction in chicken: Evidence for control by the major histocompatibility complex, Eur. J. Immunol. 4: 397.

    Article  PubMed  CAS  Google Scholar 

  • Milthor, P. P., Belanges, R., and Richter, M., 1979, The cells involved in cell-mediated and transplantation immunity in the normal outbred rabbit. I. The accelerated response in the one-way MLR of rabbit WBC from skin allograft recipients, Immunology 36: 25.

    Google Scholar 

  • Möller, G. (ed.), 1978, Acquisition of the T Cell Repertoire, Immunological Reviews, Vol. 42, Munksgaard, Copenhagen.

    Google Scholar 

  • Peck, A. B., and Click, 1973, Immune responses in vitro. III. Differentiation of H-2 and non-H-2 alloantigens of the mouse by a dual mixed leukocyte culture, Transplantation 16: 331.

    Article  PubMed  CAS  Google Scholar 

  • Plytycz, B., 1977, Strong histocompatibility antigens in Urodela amphibians (Triturus alpestris/T. vulgaris), Folia Biol. 23: 72.

    CAS  Google Scholar 

  • Ruben, L. N., and Edwards, B. F., 1978, Visualization of bispecific antigen-binding in immunized splenic lymphocytes of the newt, Triturus viridescens, Dev. Comp. Immunol. 2: 175.

    Article  PubMed  CAS  Google Scholar 

  • Ruben, L. N., and Selker, E. U., 1975, Polyfunctional antigen-binding specificity in haptencarrier responses of the newt, Triturus viridescens, Adv. Exp. Med. Biol. 64: 387.

    PubMed  CAS  Google Scholar 

  • Rychilikova, M., and Ivanyi, P., 1969, Mixed lymphocyte cultures and histoeompatibility antigens in mice, Folia Biol. 15: 126.

    Google Scholar 

  • Shreffler, D. C., David, C. S., Passmore, H. C., and Klein, J., 1971, Genetic organization and evolution of the mouse H-2 region: A duplication model, Transpl. Proc 3: 176.

    CAS  Google Scholar 

  • Silver, J., Cecka, J. M., McMillan, M., and Hood, L., 1977, Chemical characterization of products of the H-2 complex, Cold Spring Harbor Symp. Quant. Biol. 41: 369.

    Article  PubMed  Google Scholar 

  • Strominger, J. L., Mann, D. L., Parham, P., Robb, R., Springer, T., and Terhorst, C., 1977, Structure of HLA-A and B antigens isolated from cultured human lymphoblasts, Cold Spring Harbor Symp. Quant. Biol. 41: 323.

    Article  PubMed  Google Scholar 

  • Thorsby, E., 1974, The human major histocompatibility system, Transpl. Rev. 18: 51.

    CAS  Google Scholar 

  • Tournefier, A., 1973, Développement des organes lymphoides chez l’Amphibien Urodèle Triturus alpestris Laur.: Tolérance des allogreffes après la thymectomie larvaine, J. Embryol. Exp. Morphol. 29: 383.

    PubMed  CAS  Google Scholar 

  • Tournefier, A., and Charlemagne, J., 1975, Antibodies against salmonella and SRBC in urodele amphibians: Synthesis and characterization, Adv. Exp. Med. Biol 64: 161.

    PubMed  CAS  Google Scholar 

  • Tournefier, A., Charlemagne, J., and Houillon, C., 1969, Evolution des homogreffes cutanées chez l’amphibien urodèle Pleurodeles waltlii Michah: Re’sponse immunitaire primaire et secondaire, C. R. Acad. Sci. 268: 456.

    Google Scholar 

  • Wilson, D. B., Silvers, W. K., and Nowell, P. C., 1967, Quantitative studies on the mixed lymphocyte interaction in rats. II. Relationship of the proliferative response to the immunological status of the donors, J. Exp. Med. 126: 655.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Cohen, N. (1980). Salamanders and the Evolution of the Major Histocompatibility Complex. In: Marchalonis, J.J., Cohen, N. (eds) Contemporary Topics in Immunobiology. Contemporary Topics in Immunobiology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9131-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9131-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9133-7

  • Online ISBN: 978-1-4615-9131-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics