Skip to main content

Electrophoretic Light Scattering and Its Application to the Study of Cells

  • Chapter

Part of the book series: Biological Separations ((BIOSEP))

Abstract

During recent years researchers have shown that the physical properties of cells can be related to their biological function and that different cell types can be identified and separated by using appropriate physical parameters as distinguishing factors. Such properties as cell size or volume (Miller and Phillips, 1969), density (Shortman, 1968), cell surface markers (Raff, 1971; Zeiller et al., 1974), and surface charge (Dumont, 1974) have been successfully used to distinguish functionally different cells. In this report, the principles of a relatively new electrophoresis technique, referred to as electrophoretic light scattering (ELS) (Ware and Flygare, 1971; Ware, 1974; Flygare et al., 1976) are described. With this technique, the electrophoretic mobility distribution (refer to section II.A) can be measured for a large number of cells, in a small sample volume (0.1 ml), in a fraction of the time required by classical methods. A cell’s electrophoretic mobility reflects its surface charge and thus its surface composition. For example, functional changes in a cell are often correlated with changes in the cell’s electrophoretic mobility, indicating an alteration in the surface charge and possibly the composition of the membrane (Smith et al., 1976).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, H. A., 1931, The influence of size, shape and conductivity on cataphoretic mobility, and its biological significance. A review, J. Phys. Chem. 35:289.

    Article  Google Scholar 

  • Abramson, H. A., and Michaelis, L., 1929, The influence of size, shape and conductivity of microscopically visible particles on cataphoretic mobility, J. Gen. Physiol. 12:587.

    Article  Google Scholar 

  • Ambrose, E. J., 1965, Cell Electrophoresis, Churchill, London.

    Google Scholar 

  • Benedek, G. B., 1969, Polarization, Matiere and Rayonnment, Presses Universitaire de France, Paris.

    Google Scholar 

  • Bennett, A. J., and Uzgiris, E. E., 1973, Laser doppler spectroscopy in an oscillating electric field, Phys. Rev. A 8:2662.

    Article  Google Scholar 

  • Berne, B. J., and Pecora, R., 1976, Dynamic Light Scattering, John Wiley and Sons, New York.

    Google Scholar 

  • Catsimpoolas, N., and Griffith, A. L., 1977, Preparative density gradient electrophoresis and velocity sedimentation at unit gravity of mammalian cells, in Methods of Cell Separation, Vol. 1 (N. Catsimpoolas, ed.), pp. 1–23, Plenum, New York.

    Google Scholar 

  • Chu, B., 1970, Laser light scattering, Annu. Rev. Phys. Chem. 21:145.

    Article  Google Scholar 

  • Chu, B., 1974, Laser Light Scattering, Academic Press, New York.

    Google Scholar 

  • Cummins, H. Z., and Pike, E. R. (eds.), 1973, Photon Correlation and Light Beating Spectroscopy, Plenum Press, New York.

    Google Scholar 

  • Cummins, H. Z., and Swinney, H. L., 1970, Laser light scattering, in Progress in Optics (E. Wolf, ed.), American Elsevier, New York.

    Google Scholar 

  • Droege, W., and Zucker, R., 1975, Lymphocyte subpopulations in the thymus, Transplant Rev. 25:3.

    Google Scholar 

  • Dumont, F., 1974, Electrophoretic analysis of cell subpopulations in the mouse thymus as a function of age, Immunology 26:1051.

    Google Scholar 

  • Edelman, G. M., Spear, P. G., Rutishauser, U., and Yahara, I., 1974, Receptor specificity and mitogenesis in lymphocyte population, in The Cell Surface in Development (A. A. Moscona, ed.), John Wiley and Sons, New York.

    Google Scholar 

  • Fawcett, D. W., 1967, The Cell, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Flygare, W. H., Hartford, S. L., and Ware, B. R., 1976, Electrophoretic light scattering, in Molecular Electro-Optics, Part I (C. T. O’Konski, ed.), pp. 321, Marcel Dekker, New York.

    Google Scholar 

  • Forman, J. W., Jr., George, E. W., and Lewis, R. D., 1966a, Fluid flow measurement with a laser doppler velocimeter, IEEE J. Quantum Electron. GE-2, 260.

    Article  Google Scholar 

  • Forman, J. W. Jr., Lewis, R. D., and Thornton, J. R., 1966b, Laser Doppler velocimeter for measurement of localised fluid velocities in liquids, Proc. IEEE 54: 424.

    Article  Google Scholar 

  • Goldstein, R. J., and Kried, D. K., 1967, Measurement of laminar flow development in a square duct using a laser Doppler flowmeter, J. Appl. Mech. 89: 813.

    Article  Google Scholar 

  • Haas, D. D., and Ware, B. R., 1976, Design and construction of a new electrophoretic light scattering chamber and applications to solutions of hemoglobin, Anal. Biochem. 74:175.

    Article  Google Scholar 

  • Hartford, S. L., and Flygare, W. H., 1975, Electrophoretic light scattering of calf thymus deoxyribonucleic acid and tobacco mosaic virus, Macromolecules 8:80.

    Article  Google Scholar 

  • Henry, D. C., 1931, The cataphoresis of suspended particles. Part I, The equation of cataphoresis, Proc. Roy. Soc. A133:106.

    Google Scholar 

  • Hückel, E., 1924, Die Kataphorese derkugel, Physik. Z. 25:204.

    Google Scholar 

  • Josefowicz, J., and Hallett, F. R., 1975a, Cell surface effects of pokeweed observed by electrophoretic light scattering, FEBS Lett. 60:62.

    Article  Google Scholar 

  • Josefowicz, J., and Hallett, R. R., 1975b, Homodyne electrophoretic light scattering of polystyrene spheres by laser cross-beam intensity correlation, Appl. Optics 14:740.

    Article  Google Scholar 

  • Josefowicz, J. Y., Ware, B. R., Griffith, A. L., and Catsimpoolas, N., 1977, Physical heterogeneity of mouse thymus lymphocytes, Life Sci. 21:1483.

    Article  Google Scholar 

  • Kaplan, J. H., and Uzgiris, E. E., 1975, The detection of phytomitogen-induced changes in human lymphocyte surfaces by laser Doppler spectroscopy, J. Immunol. Methods 7:337.

    Article  Google Scholar 

  • Kaplan, J. H., and Uzgiris, E. E., 1976, Identifications of T and B cell subpopulations in human peripheral blood: Electrophoretic mobility distributions associated with surface marker characteristics, J. Immunol. 117:115.

    Google Scholar 

  • Luner, S. J., Szklarek, D., Knox, R. J., Seaman, G. V. F., Josefowicz, J. Y., and Ware, B. R., 1977, Red cell charge is not a function of cell age, Nature 269:719.

    Article  Google Scholar 

  • Miller, R. G., and Phillips, R. A., 1969, Separation of cells by velocity sedimentation, J. Cell Physiol. 73:191.

    Article  Google Scholar 

  • Mohan, R., Stiener, R., and Kaufmann, R., 1976, Laser Doppler spectroscopy as applied to electrophoresis in protein solutions, Anal. Blochem. 70:506.

    Article  Google Scholar 

  • Overbeech, J. Th. G., and Wiersema, P. H., 1967, The interpretation of electrophoretic mobilities, in Electrophoresis: Theory, Methods and Application, Vol. 2 (M. Bier, ed.), Academic Press, New York.

    Google Scholar 

  • Penney, C. M., 1970, Differential Doppler velocity measurements, Appl. Phys. Lett. 16:167.

    Article  Google Scholar 

  • Raff, M. C., 1971, Surface antigenic markers for distinguishing T and B lymphocytes in mice, Transplant. Rev. 6:52.

    Google Scholar 

  • Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry, Science 195:743.

    Article  Google Scholar 

  • Rudd, M. J., 1969a, Measurements made on a drag reducing solution with a laser velocimeter, Nature 224:587.

    Article  Google Scholar 

  • Rudd, M. J., 1969b, A self aligning laser Doppler velocimeter, ICO-8, Proc. Optical Instruments and Techniques, Opel, 58.

    Google Scholar 

  • Shaw, D. J., 1969, Electrophoresis, Academic Press, New York.

    Google Scholar 

  • Shortman, K., 1968, The separation of different cell classes from lymphoid organs. II. The purification and analysis of lymphocyte populations by equilibrium density gradient centrifugation, Aust. J. Exp. Biol. Med. Sci. 46:375.

    Article  Google Scholar 

  • Shortman, K., von Baehmer, H., Lipp, J., and Hopper, K., 1975, Sub-populations of T-lymphocytes, physical separation, functional specialisation and differentiation pathways of sub-sets of thymocytes and thymus-dependent peripheral lymphocytes, Transplant. Rev. 25:163.

    Google Scholar 

  • Smith, B. A., Ware, B. R., and Weiner, R. W., 1976, Electrophoretic distributions of human peripheral blood mononuclear white cells from normal subjects and from patients with acute lymphocytic leukemia, Proc. Natl. Acad. Sci. U.S.A. 73:2388.

    Article  Google Scholar 

  • Smith, B. A., Ware, B. R., and Yankee, R. A., 1978, Electrophoretic mobility distributions of normal lymphoblasts in acute lymphocytic leukemia: Effects of neuraminidase and of solvent ionic strength, J. Immunol. 120:921.

    Google Scholar 

  • Smoluchowski, M., 1914,in Handbuch der Elektrinzitat und des Magnetismus, Vol. 2 (B. Graetz, ed.), pp. 366, Leipzig, Germany.

    Google Scholar 

  • Uzgiris, E. E., 1972, Electrophoresis of particles and biological cells measured by the Doppler shift of scattered laser light, Optics Commun. 6:55.

    Article  Google Scholar 

  • Uzgiris, E. E., 1974, Laser Doppler spectrometer for study of electro-kinetic phenomena, Rev. Sci. Instrum. 45:74.

    Article  Google Scholar 

  • Uzgiris, E. E., and Kaplan, J. H., 1974, Study of lymphocyte and erythrocyte electrophoretic mobility by laser Doppler spectroscopy, Anal. Biochem. 60:455.

    Article  Google Scholar 

  • Uzgiris, E. E., and Kaplan, J. H., 1976, Laser Doppler spectroscopic studies of the electrokinetic properties of human blood cells in dilute salt solutions, J. Colloid. Interface Sci. 55:148.

    Article  Google Scholar 

  • Wang, C. P., 1971, New model for laser Doppler velocity measurements of turbulent flow, Appl. Phys. Lett. 18:522.

    Article  Google Scholar 

  • Ware, B. R., 1974, Electrophoretic light scattering, Adv. Colloid Interface Sci. 4:1.

    Article  Google Scholar 

  • Ware, B. R., and Flygare, W. H., 1971, The simultaneous measurement of the electrophoretic mobility and diffusion coefficient in bovine serum albumin solutions by light scattering, Chem. Phys. Lett. 12:81.

    Article  Google Scholar 

  • Watrasiewicz, B. M., and Rudd, M. J., 1976, Laser Doppler Measurements, Butterworths, Toronto.

    Google Scholar 

  • Weiss, L., 1967, The Cell Periphery, Metastasis and Other Contact Phenomenon, North-Holland, Amsterdam, and Wiley, New York.

    Google Scholar 

  • Yeh, H., and Cummins, H. Z., 1964, Localized fluid flow measurements with a He-Ne laser spectrometer, Appl. Phys. Lett. 4:178.

    Article  Google Scholar 

  • Zeiller, K., Pascher, G., Wagner, G., Leibich, H. G., Holzberg, E., and Hannig, K., 1974, Distinct subpopulations of thymus-dependent lymphocytes, tracing of the differentiation pathway of T cells by use of preparatively electrophoretically separated mouse lymphocytes, Immunology 26:955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Josefowicz, J.Y. (1979). Electrophoretic Light Scattering and Its Application to the Study of Cells. In: Catsimpoolas, N. (eds) Methods of Cell Separation. Biological Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9095-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9095-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9097-2

  • Online ISBN: 978-1-4615-9095-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics