Studies on the Function of the Activator of Sulphatase A

  • Günther Fischer
  • Horst Jatzkewitz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 101)


The activator of sulphatase A is necessary for the enzymic degradation of sulphatides to cerebrosides at ionic concentrations in the physiological range (1).

Activation is probably due to the reversible formation of a one-to-one complex between activator and sulphatides (1,2). Formation of this complex is partly inhibited by cerebrosides due to competitive binding (2), as well as by phospholipids (e.g. lecithin or phosphatidylserine).

Inhibition of the complex formation between activator and sulphatides by cerebrosides and phosphatidylserine depends on the concentration of the lipids and is of the same order of magnitude as the inhibition (by these lipids) of the enzymic degradation of sulphatides in the presence of activator (1). Moreover the degradation rate of sulphatides increases with the concentration of activator-sulphatide complex in the reaction mixture (1) indicating that the activator-sulphatide complex is the substrate for the enzyme in the degradation of sulphatides by sulphatase A.


Degradation Rate Sodium Acetate Buffer Incubation Mixture Competitive Binding Enzymic Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    G. Fischer, H. Jatzkewitz (submitted for publication).Google Scholar
  2. (2).
    G. Fischer, H. Jatzkewitz (1977) Biochim. Biophys. Acta, 481, 561.PubMedCrossRefGoogle Scholar
  3. (3).
    K. Stinshoff, H. Jatzkewitz (1975) Biochim. Biophys. Acta 377, 126.PubMedCrossRefGoogle Scholar
  4. (4).
    A.K. Percy, D.F. Farrell, M.M. Kaback (1972) J. Neurochem. 19, 233.PubMedCrossRefGoogle Scholar
  5. (5).
    M.T. Porter, A.L. Fluharty, S.D. de la Flor, H. Kihara (1972) Biochim. Biophys. Acta 258, 769.PubMedCrossRefGoogle Scholar
  6. (6).
    A. Jerfy, A.B. Roy (1973) Biochim. Biophys. Acta 293, 178.PubMedCrossRefGoogle Scholar
  7. (7).
    E. Mehl, H. Jatzkewitz (1968) Biochim. Biophys. Acta 151, 619.PubMedCrossRefGoogle Scholar
  8. (8).
    G. Fischer, H. Jatzkewitz (1975) Hoppe-Seyler’s Z. Physiol. Chem. 356, 605.PubMedCrossRefGoogle Scholar
  9. (9).
    W. Mraz, G. Fischer, H. Jatzkewitz (1976) Hoppe-Seyler’s Z. Physiol. Chem. 357, 1181.Google Scholar
  10. (10).
    K. Sandhoff, E. Conzelmann, H. Nehrkorn (1977) Hoppe-Seyler’s Z. Physiol. Chem., in press.Google Scholar
  11. (11).
    S.-C. Li, Y.-T. Li (1976) J. Biol. Chem. 251, 1159.PubMedGoogle Scholar
  12. (12).
    S.-C. Li, C.-C. Wan, M.Y. Mazotta, Y.-T. Li (1974) Carbohydr. Res. 34, 189.PubMedCrossRefGoogle Scholar
  13. (13).
    W. Mraz, G. Fischer, H. Jatzkewitz (1976) FEBS Lett. 67, 104.PubMedCrossRefGoogle Scholar
  14. (14).
    M.W. Ho, N.D. Light (1973) Biochem. J. 136, 821.PubMedGoogle Scholar
  15. (15).
    M.W. Ho (1975) FEBS Lett. 53, 243.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Günther Fischer
    • 1
  • Horst Jatzkewitz
    • 1
  1. 1.Max-Planck-Institut für PsychiatrieMünchen 40W.-Germany

Personalised recommendations