Advertisement

Studies on Bovine Brain Membrane-Bound Neuraminidase (Sialidase)

  • K. Sandhoff
  • B. Pallmann
  • H. Wiegandt
  • W. Ziegler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 101)

Abstract

Mammalian neuraminidases have been localised inside the lysosomes, in the cytosol as well as in the various membranes of the cell cytocavitary system (1). Brain tissue is especially rich in membrane-bound neuraminidase which reaches its highest specific activity in the plasma membranes isolated from synaptosomes (2, 3). This enzyme cleaves terminal N-acylneuraminic acid residues, predominantly from oligosialogangliosides, thereby degrading them to monosialogangliosides (4–5).

Keywords

Nitrous Oxide Sialic Acid Water Soluble Substrate Membrane Particle Neuraminidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Des-GM1

(monosialo-gangliotetraitol): Galßl→3GalNAcßl→4Ga1[3←2αNeuAc]ß1→4[3H]sorbitol

Des-GD1a

(disialo-gangliotetraitol): Gal [3←2αNeuAc] ß1→3GalNAcß 1→4Gal (3←2αNeuAc)ß1→4[3H]sorbitol

GA2

Gangliotriaosylceramide (GgOse3Cer): Ga1NACß1→4Galß1→4Glc1→l’ceramide

GM1

(ganglioside II3 NeuAc GgOse4-Cer): Galßl→3GaiNACß1→4Ga1[3←2αNeuAc]ß1→4G1cß1→1’ceramide

GM2

(ganglioside II3 NeuAc-GgOse3-Cer): Ga1NAcß1→4Gal [3←2αNeuAc]ß1→4Glcß1→1’ceramide

GDIa

(ganglioside IV3 NeuAc, II3 NeuAc-GgOse4-Cer): Gal [3←2αNeuAc]ß1→3GalNAcß1→4Gal [3←2αNeuAc]ß1→4Glcß1→1’ceramide

NeuAc

N-Acetylneuraminic acid

Sialyl-lactitol:

NeuAcα2→3Ga1ß1→4[3H]sorbitol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Symposion on Neuraminidase (1974) Behring Institute, Mitteilungen 55.Google Scholar
  2. (2).
    C.L. Schengrund and A. Rosenberg (1970) J. Biol. Chem. 245, 6196–6200.PubMedGoogle Scholar
  3. (3).
    G. Tettamanti, I.G. Morgan, G. Gambos, G. Vincendon and P. Mandel (1972) Brain Res. 47, 515–518.PubMedCrossRefGoogle Scholar
  4. (4).
    Z. Leibowitz and S. Gatt (1968) Biochim. Biophys. Acta 152, 136–143.CrossRefGoogle Scholar
  5. (5).
    R. Öhman, A. Rosenberg and L. Svennerholm (1970) Biochemistry 9, 3774–3782.PubMedCrossRefGoogle Scholar
  6. (6).
    L. Warren (1959) J. Biol. Chem. 234, 1971–1975.PubMedGoogle Scholar
  7. (7).
    J. Schraven, C. Cap, G. Nowoczek and K. Sandhoff (1977) Analyt. Biochem. 78, 333–339.PubMedCrossRefGoogle Scholar
  8. (8).
    K. Sandhoff, J. Schraven and G. Nowoczek (1976) FEBS Lett. 62, 284–287.PubMedCrossRefGoogle Scholar
  9. (9).
    V.P. Bhavanandan, A.K. Yeh and R. Carubelli (1975) Anal. Biochem. 69, 385–394.PubMedCrossRefGoogle Scholar
  10. (10).
    M. Shinitzky and Y. Barenholz (1974) J. Biol. Chem. 249, 2652.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • K. Sandhoff
    • 1
  • B. Pallmann
    • 1
  • H. Wiegandt
    • 2
  • W. Ziegler
    • 2
  1. 1.Max-Planck-Institut für PsychiatrieMünchen 40W.-Germany
  2. 2.Institut für Physiologische Chemie IPhilipps-UniversitätMarburgW.-Germany

Personalised recommendations