Advertisement

A Study on the Turnover of Rat Brain Phosphatidic Acid through the Glycerol-Phosphate Pathway

  • Luciano Binaglia
  • Rita Roberti
  • Giuseppe Porcellati
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 101)

Abstract

Phosphatidic acid can be synthesized de novo by two different pathways, usually named “glycerol-3-phosphate pathway” (1,2) and “acyl-dihydroxyacetone-phosphate pathway” (3). A study of the contribution of each one of these pathways to the synthesis of phosphatidic acid in vivo presents many difficulties, due to the high activity of brain diglyceride kinase (4,5,6). In addition, an in vivo study does not easily distinguish the mitocondrial and microsomal synthesis as well as the transfer of the newly formed molecules from one type of membrane to the other.

Keywords

Molecular Species Phosphatidic Acid Trace Trace Acid Dimethyl Ester Tidic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kornberg, A. and Pricer, W.E.Jr., (1953) J.Biol.Chem. 204, 345.PubMedGoogle Scholar
  2. 2.
    Kennedy, E.P. (1953) J.Biol.Chem. 201, 399.PubMedGoogle Scholar
  3. 3.
    Hajra, A.K. (1968) Biochem.Biophys.Res.Commun. 33, 929.PubMedCrossRefGoogle Scholar
  4. 4.
    Hokin, M.R. and Hokin, L.E. (1959) J.Biol.Chem. 234, 1381.PubMedGoogle Scholar
  5. 5.
    Lapetina, E.G. and Hawthorne, J.N. (1971) Biochem.J. 122, 171.PubMedGoogle Scholar
  6. 6.
    Friedel, R.O., and Schauberg, S.M. (1971) J.Neurochem. 18, 2191.PubMedCrossRefGoogle Scholar
  7. 7.
    Bazan, N.G. (1970) Biochim.Biophys.Acta 218, 1.PubMedCrossRefGoogle Scholar
  8. 8.
    Zahler, W.L. and Cleland W.W. (1969) Biochim.Biophys.Acta 176, 699.PubMedCrossRefGoogle Scholar
  9. 9.
    Akesson, B. (1970) Biochim.Biophys.Acta 218, 57.PubMedCrossRefGoogle Scholar
  10. 10.
    Porcellati, G. and Binaglia L. (1976) Lipids vol.1, p.75, edited by R.Paoletti, G.Porcellati and G.Jacini, Raven Press, New York.Google Scholar
  11. 1l.
    Renkonen, O. (1968) Biochim.Biophys.Acta 152, 114.PubMedCrossRefGoogle Scholar
  12. 12.
    Laurell, S. and Tibbling, G. (1966) Clin.Chim.Acta 13, 317.PubMedCrossRefGoogle Scholar
  13. 13.
    Ernster, L., Zetterström, R. and Lindberg, 0. (1950) Acta Chem. Scand. 4, 942.CrossRefGoogle Scholar
  14. 14.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J.Biol.Chem., 193, 265.PubMedGoogle Scholar
  15. 15.
    Martensson E. and Kanfer, J. (1968) J.Biol.Chem. 243, 497.PubMedGoogle Scholar
  16. 16.
    Sanchez de Jimenez, E. and Cleland, W.W. (1969) Biochim.Biophys. Acta, 176, 685.Google Scholar
  17. 17.
    Possmayer, F. and Mudd, J.B. (1971) Biochim.Biophys.Acta 239, 217.PubMedCrossRefGoogle Scholar
  18. 18.
    Mac Donald, G., Baker, R.R. and Thompson, W. (1975) J. Neurochem. 24, 655.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Luciano Binaglia
    • 1
  • Rita Roberti
    • 1
  • Giuseppe Porcellati
    • 1
  1. 1.Istituto di Chimica Biologica, Facoltà di MedicinaUniversità di Perugia, Policlinico MontelucePerugiaItaly

Personalised recommendations