Ethanolamine and Choline Phosphotransferases of Chicken Brain

  • L. Freysz
  • L. A. Horrocks
  • P. Mandel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 101)


Phospholipids are found almost exclusively in cellular membranes. Ethanolamine phosphoglycerides and choline phosphoglycerides are quantitatively the most important. They are in a constant state of metabolic flux with the rates of their synthesis and degradation often varying with the physiological activity of the tissues. Therefore the cells are continuously synthesizing new molecules of ethanolamine and choline phosphoglycerides. In brain, the last step of the de novo synthesis of these phosphoglycerides is carried out by CDP ethanolamine:1 ,2-diradyl-sn-glycerol ethanolamine phosphotransferase (EC and CDP choline:1 ,2-diradyl-sn-glycerol phosphotransferase (EC which transfer phosphoethanolamine or phosphocholine from the corresponding cytidine nucleotide to a diglyceride (1). Diglycerides are therefore situated at a branch point. They can be converted into ethanolamine phosphoglycerides, choline phosphoglycerides, tri-glycerides, or phosphatidic acids. Moreover CDP ethanolamine and CDP choline are also situated at a branch point since diacylphosphoglycerides are formed from diacylglycerols (2–4), alkenylacylphosphoglycerides from alkenylacylglycerols (5,6) and alkylacylphosphoglycerides from alkylacylglycerols (3,4,7,8). Thus the phosphotransferases are situated at branch points for both substrates. Since branch points are generally sites of enzyme regulation, we have studied the influence of possible effectors on the incorporation of different specific diglycerides and the utilization of CDP ethanolamine or CDP choline for ethanolamine and choline phosphoglyceride synthesis.


Critical Micelle Concen Lipid Substrate Embryonic Life Chicken Brain Brain Microsome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansell, G.B. (1973) in Form and Function of Phospholipids, eds. G.B. Ansell, R.M.C. Dawson and J.N. Hawthorne, Elsevier, Amsterdam, pp. 377–422.Google Scholar
  2. 2.
    Binaglia, L., Goracci, G., Porcellati, G., Roberti, R. and Woelk, H. (1973) J. Neurochem. 21, 1076–1082.CrossRefGoogle Scholar
  3. 3.
    Radominska-Pyrek, A., Strosznajder, J., Dabrowiecki, Z., Chojnacki, T. and Horrocks, L.A. (1976) J. Lipid Res. 17, 657–662.PubMedGoogle Scholar
  4. 4.
    Radominska-Pyrek, A., Strosznajder, J., Dabrowiecki, Z., Goracci, G., Chojnacki, T. and Horrocks, L.A. (1977) J. Lipid Res. 18, 53–58.PubMedGoogle Scholar
  5. 5.
    Ansell, G.B. and Metcalfe, R.F. (1971) J. Neurochem. 18, 647–665.PubMedCrossRefGoogle Scholar
  6. 6.
    Binaglia, L., Roberti, R., Goracci, G., Francescangeli, E. and Porcellati, G. (1974) Lipids 9, 738–747.PubMedCrossRefGoogle Scholar
  7. 7.
    Roberti, R., Binaglia, L., Francescangeli, E., Goracci, G. and Porcellati, G. (1975) Lipids 10, 121–127.PubMedCrossRefGoogle Scholar
  8. 8.
    Radominska-Pyrek, A. and Horrocks, L.A. (1972) J. Lipid Res. 13, 580–587.PubMedGoogle Scholar
  9. 9.
    McCaman, R.E. and Cook, K. (1966) J. Biol. Chem. 241, 3390–3394.Google Scholar
  10. 10.
    Van den Bosch, H. (1974) Ann. Rev. Biochem. 43, 243277.Google Scholar
  11. 11.
    Lord, J.H. (1975) Biochem. J. 151, 451–453.PubMedGoogle Scholar
  12. 12.
    Freysz, L., Lastennet, A. and Mandel, P. (1972) J. Neurochem. 19, 2599–2605.PubMedCrossRefGoogle Scholar
  13. 13.
    Freysz, L. and Mandel P. (1974) FEBS Lett. 40, 110113.Google Scholar
  14. 14.
    Freysz, L., Horrocks, L.A. and Mandel, P. (1977) Biochim. Biophys. Acta in press.Google Scholar
  15. 15.
    Kagawa, Y. (1972) Biochim. Biophys. Acta 265, 297338.Google Scholar
  16. 16.
    Gatt, S. and Barenholz, Y. (1973) Ann. Rev. Biochem. 42, 61–90.Google Scholar
  17. 17.
    Adamson, A.W. (1960) Physical Chemistry of Surfaces, Interscience, New York, 2nd Ed. p. 489–504.Google Scholar
  18. 18.
    Kanoh, H. and Ohno, K. (1976) Eur. J. Biochem. 66, 201–210.PubMedCrossRefGoogle Scholar
  19. 19.
    Sribney, M., Knowles, C.L. and Lyman, E.M. (1976) Biochem. J. 156, 507–514.PubMedGoogle Scholar
  20. 20.
    Fleischer, S. and Fleischer, B. (1967) Methods in Enzymology 10, 406–433.CrossRefGoogle Scholar
  21. 21.
    Renooij, W., van Golde, L.M.G., Zwaal, R.F.A. and van Deenen, L.L.M. (1976) Eur. J. Biochem. 61, 53–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Brammer, M.J. and Sheltawy, A. (1976) J. Neurochem. 27, 937–942.PubMedCrossRefGoogle Scholar
  23. 23.
    Rothman, J.E. and Lenard, J. (1977) Science 195, 743753.Google Scholar
  24. 24.
    Nilsson, 0.S. and Dallner, G. (977) J. Cell. Biol. 72, 568–583.Google Scholar
  25. 25.
    De Kruyff, B., van Golde, L.M.G. and Van Deenen, L. L.M. (1970) Biochim. Biophys. Acta 210, 425–435.Google Scholar
  26. 26.
    Sríbney, M. and Lyman, E.M. (1973) Can. J. Biochem. 51, 1479–1486.PubMedCrossRefGoogle Scholar
  27. 27.
    Freysz, L., Bieth, R. and Mandel, P. (1971) Biochimie 63, 399–405.CrossRefGoogle Scholar
  28. 28.
    Altman, J. (1969) in Handbook of Neurochemistry, ed. A. Lajtha, Plenum Press, New York, Vol. 2, pp. 137182.Google Scholar
  29. 29.
    Martin, A. and Langman, J. (1965) J. Embryol. Exp. Morphol. 14, 25–35.Google Scholar
  30. 30.
    Nurnberger, J.I. (1958) in Biology of Neuroglia, ed. W.F. Windle, Charles C Thomas, Springfield, pp. 193202.Google Scholar
  31. 31.
    Judes, C., Sensenbrenner, M., Mandel, P. and Jacob, M. (1968) Z. Zellforsch. 89, 137–150.PubMedCrossRefGoogle Scholar
  32. 32.
    Reddick, M.L. (1951) Anat. Rec. 109, 81–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Bensted, J.P.M., Dobbing, J., Morgan, R.S., Reid, R.T.W. and Payling Wright, G. (1957) J. Embryol. Exp. Morphol. 5, 428–431.Google Scholar
  34. 34.
    Adams, C.W.M. and Davison, A.N. (1959) J. Neurochem. 4, 282–289.PubMedCrossRefGoogle Scholar
  35. 35.
    Garrigan, 0.W. and Chargaff, E. (1963) Biochim. Biophys. Acta 70, 452–464.Google Scholar
  36. 36.
    Romanoff, A.L. (1960) in The Avian Embryo, ed. A.L. Romanoff, McMillan, New York, pp. 209–362.Google Scholar
  37. 37.
    Horrocks L.A. (1972) in Ether Lipids. Chemistry and Biology ed. F. Snyder, Academie Press. New-York p. 177–272.Google Scholar
  38. 38.
    Porcellati, G., Bíasion, M.G. and Pirotta, M. (1970) Lipids 5, 734–742.CrossRefGoogle Scholar
  39. 39.
    Wegelin, I. and Manzolí, F.A. (1967) J. Neurochem. 14, 1161–1165.PubMedCrossRefGoogle Scholar
  40. 40.
    Manzoli, F.A. and Wegelin, I. (1969) J. Neurochem. 16, 829–831.PubMedCrossRefGoogle Scholar
  41. 41.
    Soto, E.F., Pasquini, J.M. and Krawiec, L. (1972) Arch. Biochem. Biophys. 150, 362–370.Google Scholar
  42. 42.
    McMurray, W.C. and Dawson, R.M.C. (1969) Biochem. J. 112, 91–108.PubMedGoogle Scholar
  43. 43.
    Ostrow, D. and Getz, G.S. (1973) Feder. Proc. 32, 601 (Abstr.).Google Scholar
  44. 44.
    Sarzala, M.G. Van Golde, L.M.G., De Kruyff, B. and Van Deenen, L.L.M. (1970) Biochim. Biophys. Acta 202, 106–119.PubMedGoogle Scholar
  45. 45.
    Van Golde, L.M.G., Fleischer, B. and Fleischer, S. (1971) Biochim. Biophys. Acta 249, 318–330.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • L. Freysz
    • 1
    • 2
  • L. A. Horrocks
    • 1
    • 2
  • P. Mandel
    • 1
    • 2
  1. 1.Centre de Neurochimie du CNRSStrasbourg CedexFrance
  2. 2.Department of Physiological ChemistryThe Ohio State University, ColumbusUSA

Personalised recommendations