Advertisement

Choline and Ethanolamine Kinase Activity in the Cytoplasm of Nerve Endings from Rat Forebrain

  • Sheila Spanner
  • G. Brian Ansell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 101)

Abstract

In brain tissue there are two pathways by which choline and ethanolamine can be incorporated into a lipid-bound form. The first is the cytidine pathway originally described by Kennedy and Weiss (1956) for liver and the second, though it is probably a minor pathway, is a calciummediated exchange where the base is exchanged with that of an intact phospholipid (Ansell & Spanner, 1966; Porcellati, et al., 1971; Kanfer, 1972). In this account the first step of the cytidine pathway will be discussed in detail and in particular, this step in the nerve endings of brain.

Keywords

Nerve Ending Intracerebral Injection Synaptosomal Membrane Choline Kinase Synaptosomal Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A.A. & Smith, J.P. (1972) Biochem. Pharmacol. 21, 3005–3021.PubMedCrossRefGoogle Scholar
  2. Ansell, G.B. & Spanner, S. (1966) Biochem. J. 100, 50 PGoogle Scholar
  3. Ansell, G.B. & Spanner, S. (1967) J. Neurochem. 14, 873–885.PubMedCrossRefGoogle Scholar
  4. Ansell, G.B. & Spanner, S. (1968) Biochem. J. 110, 201–206.PubMedGoogle Scholar
  5. Ansell, G.B. & Spanner, S. (1974) J. Neurochem. 22, 1153–1155.PubMedCrossRefGoogle Scholar
  6. Ansell, G.B. & Spanner, S. (1975) Biochem. Pharmacol. 24, 1719–1723.PubMedCrossRefGoogle Scholar
  7. Ansell, G.B. & Spanner, S. (1976) Adv. Exp. Med. & Biol. 72, 161–168.Google Scholar
  8. Arienti, G., Corrazi, L., Woelk, H. & Porcellati, G. (1976) J. Neurochem. 27, 203–210.PubMedCrossRefGoogle Scholar
  9. Cooper, P.H. & Hawthorne, J.N. (1975) Biochem. J. 150, 537–551.PubMedGoogle Scholar
  10. De Pierre, J.W. & Karnovsky, M.L. (1973) J.Cell Biol. 56, 275–303.CrossRefGoogle Scholar
  11. Diamond, I. & Kennedy, E.P. (1969) J. Biol. Chem. 244, 3258–3263.PubMedGoogle Scholar
  12. Dowdall, M.J., Barker, L.A. & Whittaker, V.P. (1972) Biochem. J. 130, 1081–1094.PubMedGoogle Scholar
  13. Gardiner, J.E. (1961) Biochem. J. 81, 297–303PubMedGoogle Scholar
  14. Gomez, M.V., Domino, E.F., Santiago, J.C. & Sellinger, O.Z. (1971). Neurobiology 1, 103–114.Google Scholar
  15. Haubrich, D.R. (1973) J. Neurochem. 21, 315–328.PubMedCrossRefGoogle Scholar
  16. Kanfer, J.N. (1972) J. Lipid Res. 13, 468–476.PubMedGoogle Scholar
  17. Kennedy, E.P. & Weiss, S. B. (1956) J. Biol. Chem. 222, 193–214.PubMedGoogle Scholar
  18. Lunt, G.G. & Lapetina, E.G. (1970) Brain Res. 17, 164–167.CrossRefGoogle Scholar
  19. McCaman, R.E. (1962) J. Biol. Chem. 237, 672–676.Google Scholar
  20. McCaman, R.E. & Cook, K. (1966) J. Biol. Chem. 241, 3390–3394.PubMedGoogle Scholar
  21. Miller, E.K. & Dawson, R.M.C. (1972) Biochem. J. 126, 805–821.PubMedGoogle Scholar
  22. Porcellati, G., Arienti, G., Pirotta, M. & Giorgini, D. (1971) J. Neurochem. 18, 1395–1417.PubMedCrossRefGoogle Scholar
  23. Schueler, F.W. (1960) Int. Rev. Neurobiol. 2, 77–97PubMedCrossRefGoogle Scholar
  24. Spanner, S. & Ansel, G.B. (1977) Biochem. Soc. Trans. 5, 164–165.PubMedGoogle Scholar
  25. Strickland, K.P., Thompson, R.H.S. & Webster, G.R. (1956) J. Neurol. Neurosurg. Psychiat. 19, 12–16.PubMedCrossRefGoogle Scholar
  26. Sun, A.Y. & Sun, G.Y. (1976) Adv. Exp. Med. & Biol. 72, 169–197.Google Scholar
  27. Weinhold, P.A. & Rethy, V.B. (1974) Biochemistry, 13, 5135–5141.PubMedCrossRefGoogle Scholar
  28. Yamamura, H.I. & Snyder, S.H. (1973) J. Neurochem. 21, 1355–1374.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Sheila Spanner
    • 1
  • G. Brian Ansell
    • 1
  1. 1.Department of PharmacologyThe Medical SchoolBirminghamUK

Personalised recommendations