Advertisement

The Preparation of Phospholipids by Phospholipase D

  • Stephan Kovatchev
  • Hansjörg Eibl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 101)

Summary

The transfer of the phosphatidyl residue from egg phosphatidylcholine to primary alkanols catalyzed by phospholipase D was systematically investigated. It was demonstrated that 1) the chain length of the alkanols is of critical importance, e.g. transphosphatidylation does not occur to alkanols or alkandiols with more than six carbon atoms; 2) double or triple bonds in the acceptor molecule do not influence the transfer reaction; 3) fluorine is tolerated in the acceptor molecule, but the transfer rate decreases with increasing atomic weight from chlorine to iodine.

Synthetic phosphatidylcholines with large variations in the apolar part of the molecule, the phosphorylcholines of 1.2-diacyl-snglycerol, Acyl-propandiol-(1.3) and 1.2-cyclopentadecylmethylideneglycerol, have been successfully used in the transfer reaction. Transesterification is an attractive route for the synthesis of phospholipids differing in the polar part of the molecule.

Keywords

Transfer Reaction Phosphatidic Acid Acceptor Molecule Thin Layer Chromato Cabbage Leave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hanahan, D.J., and Chaikoff, J.L., J. Biol. Chem. 172 (1948) 191–198PubMedGoogle Scholar
  2. 2.
    Kates, M., Can. J. Biochem. Physiol. 34 (1956) 967–980CrossRefGoogle Scholar
  3. 3.
    Benson, A.A., Freer, S., and Yang, S.F., (1965) 9th Intern. Conf. Biochem. Lipids, Noordwijk aan Zee, The NetherlandsGoogle Scholar
  4. 4.
    Bartels, C.T., and van Deenen, L.L.M., Biochim. Biophys. Acta 125 (1966) 395–397CrossRefGoogle Scholar
  5. 5.
    Yang, S.F., Freer, S., and Benson, A.A., J. Biol. Chem. 242 (1967) 477–484PubMedGoogle Scholar
  6. 6.
    Dawson, R.M.C., Biochem. J. 102 (1967) 205–210PubMedGoogle Scholar
  7. 7.
    Lennarz, W.J., Bonsen, P.P.M., and van Deenen, L.L.M., Biochemistry 6 (1967) 2307–2312PubMedCrossRefGoogle Scholar
  8. 8.
    Jezyk, P.F., and Hughes, H.N., Biochim. Biophys. Acta 296 (1973) 24–33PubMedCrossRefGoogle Scholar
  9. 9.
    Eibl, H., Arnold, D., Weltzien, H.U., and Westphal, O., Liebigs Ann. Chem. 709 (1967) 226–230CrossRefGoogle Scholar
  10. 10.
    Eibl, H., and Westphal, O., Liebigs Ann. Chem. 738 (1970) 170–173CrossRefGoogle Scholar
  11. 11.
    Eibl, H., and Nicksch, A., Chem. Phys. Lipids, submitted for publicationGoogle Scholar
  12. 12.
    Davidson, F.M., and Long, C., Biochem. J. 69, (1958) 458–466PubMedGoogle Scholar
  13. 13.
    Lowry, 0.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem. 193 (1951) 265–275Google Scholar
  14. 14.
    Singleton, W.S., Gray, M.S., Brown, M.L., and White, J.L., J. Am. Oil Chem. Soc. 42 (1965) 53–56PubMedCrossRefGoogle Scholar
  15. 15.
    Eibl, H., and Westphal, O., Liebigs Ann. Chem. 709 (1967) 244–247CrossRefGoogle Scholar
  16. 16.
    Eibl, H., and Lands, W.E.M., Anal. Biochem. 30 (1969) 51–57PubMedCrossRefGoogle Scholar
  17. 17.
    Eibl, H., and Lands, W.E.M., Biochemistry 9 (1970) 423–428PubMedCrossRefGoogle Scholar
  18. 18.
    Gould, E.S., in: Mechanismus und Struktur in der organischen Chemie, Verlag Chemie, Weinheim (1971) 47–50Google Scholar
  19. 19.
    Comfurius, P., and Zwaal, R.F.A., Biochim. Biophys. Acta 488 (1977) 36–42CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Stephan Kovatchev
    • 1
  • Hansjörg Eibl
    • 1
  1. 1.Max-Planck-Institut für biophysikalische ChemieGöttingen-NikolausbergWest Germany

Personalised recommendations