Advertisement

Lipases of Rat Brain Microsomes

  • Myles C. Cabot
  • Shimon Gatt
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 101)

Abstract

There exists a considerable degree of information in regard to the activities of glycerol ester hydrolases from numerous tissue sources. However, little attention has been given to the study of glyceride lipases in brain. Brain, in comparison to other organs, contains smaller quantities of neutral glycerides; amounts of triacylglycerol from whole rat brain have been established at 0.15–0.17 umol/g tissue (1). Numerous observations demonstrate that acylglycerols are metabolically active in brain tissue (2–5). In addition, several findings suggest the possibility for the presence of lipase activity in brain. These include the production of free fatty acids in incubated slices of mouse brain (6), and the rapid appearance and loss of radioactivity inthe triacylglycerols of mouse brain following intracerebral injection of (1-14C)oleic acid (7). Other observations report a reduction in the concentration of membrane diacylglycerol levels in crude homogenates of rat brain (8) and an increase in the amount of free fatty acids at the onset of brain ischemia (9). Ischemia was in turn accompanied by triacylglycerol breakdown, and the involvement of a separate diacylglycerol lipase was postulated (10).

Keywords

Free Fatty Acid Lipase Activity Pancreatic Lipase Microsomal Protein Fatty Acid Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rowe, C.E. (1969) J. Neurochem 16, 205–214.PubMedCrossRefGoogle Scholar
  2. 2.
    Brüuning, C. and Gercken, G (1976) J. Neurochem 26 1257–1261.CrossRefGoogle Scholar
  3. 3.
    Sun, G.Y. and Yau, T.M. (1976) J. Neurochem 27, 87–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Marinetti, G.V., Weindl, A. and Kelly, J. (1971) J. Neurochem 18, 2003–2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Sun, G.Y. and Horrocks, L.A. (1971) J. Neurochem 18, 1963–1969.PubMedCrossRefGoogle Scholar
  6. 6.
    Lunt, G.G. and Rowe, C.E. (1968) Biochim. Biophys. Acta 152, 681–693.PubMedCrossRefGoogle Scholar
  7. 7.
    Yau, T.M. and Sun, G.Y. (1973) Lipids 8, 410–414.PubMedCrossRefGoogle Scholar
  8. 8.
    Banschbach, M.W. and Geison, R.L. (1975) J. Neurochem 25, 363–365.PubMedCrossRefGoogle Scholar
  9. 9.
    Bazan, N.G., Bazan, H.E.P., DeKennedy, W. and Joel, C.D. (1971) J. Neurochem 18 1387–1393.PubMedCrossRefGoogle Scholar
  10. 10.
    Aveldano, M.I. and Bazan, N.G. (1975) J. Neurochem 25, 919–920.PubMedCrossRefGoogle Scholar
  11. 11.
    Kennedy, E.P. (1957) Annu. Rev. Biochem 26, 119–148.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Deenen, L.L.M. and De Haas, G.H. (1966) Annu. Rev. Biochem 35, 157–194.CrossRefGoogle Scholar
  13. 13.
    Vyvoda, O.S. and Rowe, C.E. (1973) Biochem. J 132, 233–248.PubMedGoogle Scholar
  14. 14.
    Cabot, M.C. and Gatt, S. (1976) Biochim. Biophys. Acta 431, 105–115.PubMedCrossRefGoogle Scholar
  15. 15.
    Cabot, M.C. and Gatt, S. (1977) Biochemistry 16, 2330–2334.CrossRefGoogle Scholar
  16. Brockerhoff, H.,(1965) Arch. Biochem. Biophys. 110, 586–592.CrossRefGoogle Scholar
  17. 17.
    Carter, J.R. Jr. (1967) Biochim. Biophys. Acta 137, 147–156.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas, A.E. III, Scharoun, J.E. and Ralston, H. (1965) J. Am. Oil Chem. Soc 42, 789–792.CrossRefGoogle Scholar
  19. 19.
    Bligh, E.G. and Dyer, W.J. (1959) Can. J. Biochem. Physiol 37, 911–917.PubMedCrossRefGoogle Scholar
  20. 20.
    Müller, L. and Alaupovic, P. (1970) FEBS Lett. 10, 117–120.PubMedCrossRefGoogle Scholar
  21. 21.
    Mahadevan, S. and Tappel, A.L. (1968) J. Biol. Chem 243, 2849–2854.PubMedGoogle Scholar
  22. 22.
    Mattson, F.H. and Beck, L.W. (1955) J. Biol. Chem 214, 115–125.PubMedGoogle Scholar
  23. 23.
    Hayase, K. and Tappel, A.L. (1970) J. Biol. Chem 245, 169–175.PubMedGoogle Scholar
  24. 24.
    Assmann, G., Krauss, R.M., Fredrickson, D.S. and Levy, R.I. (1973) J. Biol. Chem 248, 7184–7190.PubMedGoogle Scholar
  25. 25.
    Biala, Y., Gorin, E. and Shafrir, E. (1968) Biochim. Biophys. Acta 152, 28–39.CrossRefGoogle Scholar
  26. 26.
    Giudicelli, H., Combes-Pastre, N. and Boyer, J. (1974) Biochim. Biophys. Acta 369, 25–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Strand, O., Vaughan, M. and Steinberg, D. (1964) J. Lipid. Res 5, 554–562.PubMedGoogle Scholar
  28. 28.
    Claycomb, W.C. and Kilsheimer, G.S. (1971) Biol. Chem 246, 7139–7143.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Myles C. Cabot
    • 1
    • 2
  • Shimon Gatt
    • 2
  1. 1.Medical and Health Sciences DivisionOak Ridge Associated UniversitiesOak RidgeUSA
  2. 2.Department of BiochemistryHebrew University, Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations