Advertisement

Chromium Depletion and Void Formation in Fe—Ni—Cr Alloys During Molten Salt Corrosion and Related Processes

Chapter

Abstract

This chapter will discuss the processes that can cause chromium depletion in Fe—Ni—Cr alloys and the effect of the chromium-depleted layer on the subsequent corrosion resistance of the alloy. In general, the alloys discussed will be iron or nickel based. For completeness we will include alloys that contain constituents other than iron, nickel, or chromium, but only in cases where chromium depletion plays a major part in the process of interest.

Keywords

Molten Salt Chromium Carbide Void Formation Intergranular Corrosion Balance Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Glassner, ANL-5750, Argonne National Laboratory (1957).Google Scholar
  2. 2.
    G. M. Adamson, R. S. Crouse, and W. D. Manly, ORNL-2337, Oak Ridge National Laboratory (March 20, 1959).Google Scholar
  3. 3.
    G. M. Adamson, R. S. Crouse, and W. D. Manly, ORNL-2338, Oak Ridge National Laboratory (Jan. 3, 1961).Google Scholar
  4. 4.
    A. de S. Brasunas, Metals Progr. 62(6), 88 (1952).Google Scholar
  5. 5.
    W. D. Manly, Corrosion Behavior of Fused Fuels, in Proc. 2nd Fluid Fuels Development Conf., pp. 370–412, Oak Ridge National Laboratory, April 1952, ORNL-CF-52–4–197.Google Scholar
  6. Metals Handbook, American Society for Metals, Cleveland, Ohio (1948), p. 1046.Google Scholar
  7. 7.
    P. D. Miller, C. L. Peterson, O. M. Steward, E. F. Stephan, and F. W. Fink, BMI-1348, Battelle Memorial Institute (June 3, 1959).Google Scholar
  8. 8.
    W. D. Manly, J. H. Coobs, J. H. De Van, D. A. Douglas, H. Inouye, P. Patriarca, T. K. Roche, and J. L. Scott, Metallurgical Problems in Molten Fluoride Systems, in Progress in Nuclear Energy Series IV 2, 164–179 (1960).Google Scholar
  9. 9.
    R. W. Balluffi and B. H. Alexander, SEP-83, Sylvania Electric Products (February 1952).Google Scholar
  10. MSR Prog. Semiann. Progr. Rept. July 31, 1964, ORNL-3708, pp. 330–342, Oak Ridge National Laboratory.Google Scholar
  11. MSR Prog. Semiann. Progr. Rept. July 31, 1960, ORNL-3014, pp. 55–58, Oak Ridge National Laboratory.Google Scholar
  12. 12.
    J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. February 29, 1968, ORNL-4354, pp. 218–225, Oak Ridge National Laboratory.Google Scholar
  13. 13.
    J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. August 31, 1968, ORNL-4344, pp. 257–266, Oak Ridge National Laboratory.Google Scholar
  14. 14.
    W. J. Hamer, M. S. Malmberg, and B. Rubin, J. Electrochem. Soc. 112, 750 (1965).Google Scholar
  15. 15.
    C. F. Baes, The Chemistry and Thermodynamics of Molten Salt-Reactor Fluoride Solutions, in Thermodynamics, Vol. I, pp. 409–433, International Atomic Energy Agency, Vienna (1966).Google Scholar
  16. 16.
    H. W. Jenkins, G. Mamantov, and D. L. Manning, unpublished work cited by G. Mamantov, in Molten Salts, Characterization and Analysis, pp. 539–540 (G. Mamantov, ed.), Marcel Dekker, New York (1969).Google Scholar
  17. 17.
    J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. February 28, 1969, ORNL-4396, pp. 243–253, Oak Ridge National Laboratory.Google Scholar
  18. 18.
    J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. August 31, 1969, ORNL-4449, pp. 195–208, Oak Ridge National Laboratory.Google Scholar
  19. 19.
    J. W. Koger, MSR Prog. Semiann. Progr. Rept. February 28, 1970, ORNL-4548, pp. 240–252, Oak Ridge National Laboratory.Google Scholar
  20. 20.
    J. W. Koger, MSR Prog. Semiann. Progr. Rept. August 31, 1970, ORNL-4622, pp. 165–178, Oak Ridge National Laboratory.Google Scholar
  21. 21.
    J. W. Koger, MSR Prog. Semiann. Progr. Rept. February 28, 1971, ORNL-4676, pp. 192–215, Oak Ridge National Laboratory.Google Scholar
  22. 22.
    R. B. Evans III, J. W. Koger, and J. H. De Van, ORNL-4575, Vol. II, Oak Ridge National Laboratory (June 1971).Google Scholar
  23. 23.
    R. V. Churchill, Modern Operational Mathematics in Engineering, 1st ed., pp. 109–112, McGraw-Hill, New York (1950).Google Scholar
  24. 24.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., pp. 58–61, Oxford University Press, New York (1959).Google Scholar
  25. 25.
    R. B. Evans III, ANP Prog. Quart. Progr. Rept. Dec. 31, 1957, ORNL-2440, pp. 104–113, Oak Ridge National Laboratory.Google Scholar
  26. 26.
    W. R. Grimes, G. M. Watson, J. H. De Van, and R. B. Evans, Radio Tracer Techniques in the Study of Corrosion by Molten Fluorides, in Conf. Use of Radioisotopes in the Physical Sciences and Industry, September 1960, Proc. Vol. III, pp. 559–574, International Atomic Energy Agency, Vienna (1962).Google Scholar
  27. 27.
    R. B. Evans III, J. H. DeVan, and G. M. Watson, Self-Diffusion of Chromium in Nickel-Base Alloys, ORNL-2982, Oak Ridge National Laboratory (January 1961).Google Scholar
  28. 28.
    J. H. Jackson and M. H. LaChance, Trans. ASM 46, 157–183 (1954).Google Scholar
  29. 29.
    R. Bakish and F. Kern, Corrosion 16, 533t–534t (1960).Google Scholar
  30. 30.
    L. L. Quill, The Chemistry and Metallurgy of Miscellaneous Materials, Thermodynamics, McGraw-Hill, New York (1950).Google Scholar
  31. 31.
    H. A. Laitinen and C. H. Liu, J. Am. Chem. Soc. 80(5), 1015 (1958).Google Scholar
  32. 32.
    S. I. Stepanov, E. B. Kachina-Pullo, V. N. Devyatkin, and E. A. Ukshe, Investigation of Corrosion Processes in Molten Chlorides, in Surface Phenomena in Metallurgical Processes, pp. 203–210 (A.I. Belyaev, ed.), transl. by Consultants Bureau, New York (1965).Google Scholar
  33. 33.
    V. P. Kochergin, A. V. Kabirov, and O. N. Skornyakova, Zh. Prikl. Khim. 27, 944 (1954), as cited in Ref. 32.Google Scholar
  34. 34.
    V. P. Kochergin, M. S. Garpinenko, O. N. Skornyakova, and I. Sh. Minulina, Zh. Prikl. Khim. 29, 566 (1956), as cited in Ref. 32.Google Scholar
  35. 35.
    V. P. Kochergin and G. I. Stolyarova, Zh. Prikl. Khim. 29, 730 (1956), as cited in Ref. 32.Google Scholar
  36. 36.
    N. D. Tomashov and N. I. Tugarinov, Zh. Prikl Khim. 30, 1619 (1957), as cited in Ref. 32.Google Scholar
  37. 37.
    Yu. K. Delimarskii and B. F. Markov, Electrochemistry of Molten Salts, Metallurgizdat (1960), as cited in Ref. 32.Google Scholar
  38. 38.
    C. Edeleanu and R. Littlewood, Electrochim. Acta 3, 195 (1960).Google Scholar
  39. 39.
    R. Littlewood, Electrochim. Acta 3, 270 (1961).Google Scholar
  40. 40.
    C. Edeleanu, J. G. Gibson, and J. E. Meredith, J. Iron Steel Inst. 196, 59 (1960).Google Scholar
  41. 41.
    C. Edeleanu and J. G. Gibson, J. Inst. Metals 88, 321 (1959).Google Scholar
  42. 42.
    R. Littlewood, J. Electrochem. Soc. 109, 525–534 (1962).Google Scholar
  43. 43.
    R. Littlewood and C. Edeleanu, Silicates Industrieis 26, 447 (1961).Google Scholar
  44. 44.
    R. Littlewood and E. J. Argent, Electrochim. Acta 4, 114 (1961); 4, 155 (1961).Google Scholar
  45. J. W. Koger, Oak Ridge National Laboratory, unpublished results.Google Scholar
  46. 46.
    C. Edeleanu, J. G. Gibson, and J. E. Meredith, Effects of Diffusion on Corrosion of Metals by Fused Salts, in Proprietes des Joints de Grains, pp. 71–74, 4e Colloque de Metallurgie, June 1960, Saclay, France, Presses Universitaries de France (1961).Google Scholar
  47. 47.
    A. U. Seybolt, Oxid. Metals 2, 119–143 (1970).Google Scholar
  48. 48.
    A. Moskowitz and L. Redmerski, WADD-TR-60–115, Wright Air Development Division (February 1960).Google Scholar
  49. 49.
    E. E. Hoffman and W. D. Manly, Corrosion Resistance of Metals and Alloys to Sodium and Lithium (Advan. Chem. Ser. No. 19), pp. 1182–1191, Am. Chem. Soc, Washington, D.C. (1957).Google Scholar
  50. 50.
    W. D. Manly, Corrosion 12, 336–342 (1956).Google Scholar
  51. 51.
    R. E. Seebold, L. S. Birks, and E. J. Brooks, Corrosion 16, 468t–470t (1960).Google Scholar
  52. 52.
    J. D. Mottley, GEAP-4313, General Electric Co. (1964).Google Scholar
  53. 53.
    J. R. Weeks, C. J. Klamut, and D. H. Gurinsky, in Alkali Metal Coolants, pp. 3–22, International Atomic Energy Agency, Vienna (1967).Google Scholar
  54. 54.
    A. W. Thorley and C. Tyzack, in Alkali Metal Coolants, pp. 97–118, International Atomic Energy Agency, Vienna (1967).Google Scholar
  55. 55.
    A. W. Thorley and J. A. Bardsley, J. Roy. Microscop. Soc. 88, 431–447 (1968).Google Scholar
  56. 56.
    P. Roy, D. Dutina, and F. Comprelli, in Corrosion by Liquid Metals, pp. 1–20 (J. E. Draley and J. R. Weeks, eds.) (1970).Google Scholar
  57. 57.
    E. L. Zebroski, R. S. Young, and F. A. Comprelli, in Alkali Metal Coolants, pp. 195–211, International Atomic Energy Agency, Vienna (1967).Google Scholar
  58. 58.
    A. J. Romano, S. J. Wachtel, and C. J. Klamut, ANL-7520, Argonne National Laboratory, Part 1, pp. 151–152 (1968).Google Scholar
  59. 59.
    M. C. Rowland, D. E. Plumlee, and R. S. Young, GEAP-4831, General Electric Co. (1965).Google Scholar
  60. 60.
    G. C. Wood, Corros. Sci. 2, 173–196 (1961).Google Scholar
  61. 61.
    G. C. Wood and D. A. Melford, J. Iron Steel Inst. 198, 142 (1961).Google Scholar
  62. 62.
    H. H. Uhlig, The Corrosion Handbook, Wiley, New York (1948).Google Scholar
  63. 63.
    V. V. Ipat’ev and G. M. Orlova, Uch. Zap. Leningrad Gos. Univ. Ser. Khim. Nauk. 14, 128 (1954).Google Scholar
  64. 64.
    I. I. Kornilov and A. I Shpikelman, Dokl. Akad. Nauk. SSSR 53, 813 (1946); 54, 511 (1946).Google Scholar
  65. 65.
    T. P. Hoar and E. A. G. Croom, J. Iron Steel Inst. 196, 101 (1951).Google Scholar
  66. 66.
    H. W. Paxton and E. J. Pasierb, Trans. Met. Soc. AIME 218, 794 (1960).Google Scholar
  67. 67.
    H. W. Paxton and T. Kunitake, Trans. Met. Soc. AIME 218, 1003 (1960).Google Scholar
  68. 68.
    G. C. Wood and D. P. Whittle, Corr. Sci. 7, 773–782 (1967).Google Scholar
  69. 69.
    D. P. Whittle and G. C. Wood, J. Electrochem. Soc. 114, 986–991 (1967).Google Scholar
  70. 70.
    G. C. Wood and D. P. Whittle, Corr. Sci. 4, 263–292 (1964).Google Scholar
  71. 71.
    G. C. Wood and D. P. Whittle, Corr. Sci. 4, 293–313 (1964).Google Scholar
  72. 72.
    D. Caplan, Corr. Sci. 6, 509–515 (1966).Google Scholar
  73. 73.
    V. R. Howes, Corr. Sci. 7, 469–471 (1967).Google Scholar
  74. 74.
    G. C. Wood and D. P. Whittle, J. Electrochem. Soc. 115, 126–142 (1968).Google Scholar
  75. 75.
    D. Mortimer and M. L. Post, Corr. Sci. 8, 498–512 (1968).Google Scholar
  76. 76.
    V. R. Howes, Corr. Sci. 8, 221–224 (1968).Google Scholar
  77. 77.
    V. R. Howes, Corr. Sci. 8, 729–736 (1968).Google Scholar
  78. 78.
    D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood, Acta Met. 15, 1421 (1967).Google Scholar
  79. 79.
    G. C. Wood and J. Boustead, Corr. Sci. 8, 719–723 (1968).Google Scholar
  80. 80.
    M. G. Hobby, M. Sci. Thesis, University of Manchester (1968).Google Scholar
  81. 81.
    G. C. Wood and M. G. Hobby, in Proc. 3rd Int. Congr. Metallic Corrosion Moscow, 1966, Swets and Zeitlinger, N.V., Amsterdam.Google Scholar
  82. 82.
    D. Caplan and M. Cohen, Trans. AIME 194, 1057 (1952).Google Scholar
  83. 83.
    G. C. Wood and M. G. Hobby, J. Iron Steel Inst. 203, 54 (1965).Google Scholar
  84. 84.
    A. U. Seybolt, J. Electrochem. Soc. 107, 147–156 (1960).Google Scholar
  85. 85.
    G. C. Wood and T. Hodgekiess, J. Electrochem. Soc. 113, 319–327 (1966).Google Scholar
  86. 86.
    G. C. Wood, T. Hodgekiess, and D. P. Whittle, Corr. Sci. 6, 129–147 (1966).Google Scholar
  87. 87.
    R. V. Trax and J. C. Holzworth, Corrosion 16, 271t–274t (1960).Google Scholar
  88. 88.
    L. S. Redmerski and A. Moskowitz, Trans. AIME 245, 2165–2173 (1969).Google Scholar
  89. 89.
    T. Ericcson, Oxid. Metals 2, 401–417 (1970).Google Scholar
  90. 90.
    S. Leistikow, H. v. Berg, and E. Pott, KFK-1301, Kernforschungszentrum Karlsruhe (1971).Google Scholar
  91. 91.
    H. Coriou, L. Grall, C. Mahieu, and M. Pelras, Rev. Met. 65, 643–650 (1968).Google Scholar
  92. 92.
    W. L. Pearl and S. Leistikow, GEAP-5175, General Electric Co., pp. 16–8–16–12 (1966).Google Scholar
  93. 93.
    S. Leistikow, E. Pott, and H. v. Berg, KFK-1054, Kernforschungszentrum Karlsruhe (1969); KFK-1301 Kernforschungszentrum Karlsruhe (1971).Google Scholar
  94. 94.
    S. Leistikow, in Proc. 4th Int. Congr. Met. Corr., Amsterdam, 1969, National Association of Corrosion Engineers, Houston, Texas (1972).Google Scholar
  95. 95.
    W. Stiefel, Tech. Rundsch. Sulzer 3, 21–27 (1961).Google Scholar
  96. 96.
    W. E. Ruther, in Proc. Nucl. Superheat Meeting, Idaho Falls, COO–267 (1963).Google Scholar
  97. 97.
    M. Warzée, M. Maurice, C. Sonnen, J. Waty, and Ph. Berge, Rev. Met. 61, 593–601 (1964).Google Scholar
  98. 98.
    M. Warzée, M. Maurice, J. Hennaut, J. Waty, and Ph. Berge, EUR-1735, European Atomic Energy Community (1964).Google Scholar
  99. 99.
    W. E. Ruther and S. Greenberg, J. Electrochem. Soc. 111, 1116–1121 (1964).Google Scholar
  100. 100.
    W. L. Pearl, E. G. Brush, G. G. Gaul, and G. P. Wozadlo, GEAP-4760, General Electric Company, p. 67–11 (1965).Google Scholar
  101. 101.
    M. Warzée, J. Hennauth, M. Maurice, C. Sonnen, and J. Waty, J. Electrochem. Soc. 112, 670–674 (1965).Google Scholar
  102. 102.
    M. Warzée, J. Hennauth, M. Maurice, and Ph. Berge, Mem. Sci. Rev. Met. 62(3), 239–247 (1965).Google Scholar
  103. 103.
    G. Ostberg, L. Unneberg, M. de Pourbaix, S. Jansson, W. Hübner, and L. Hammar, S-332, Aktiebolaget Atomenergi, Stockholm (1966).Google Scholar
  104. 104.
    M. Warzée, C. Sonnen, J. Cremer, and Ph. Berge, EUR-3387, European Atomic Energy Community (1967).Google Scholar
  105. 105.
    Ph. Berge, EUR-3776, European Atomic Energy Community (1968).Google Scholar
  106. 106.
    S. Jansson, W. Hübner, and M. de Pourbaix, Brit. Corros. J. 4, 21–31 (1969).Google Scholar
  107. 107.
    P. J. van Tilborg and A. van der Linda, RCN-109, Reactor Centrum Nederland (1969).Google Scholar
  108. 108.
    T. Ericsson, in Proc. 4th Int. Congr. Met. Corr., Amsterdam, 1969, National Association of Corrosion Engineers, Houston, Texas (1972).Google Scholar
  109. 109.
    W. L. Pearl, D. G. Brush, G. G. Gaul, and G. P. Wozadlo, Corrosion 21, 235–245 (1965).Google Scholar
  110. 110.
    D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Met. 15, 1747–1755 (1967).Google Scholar
  111. 111.
    G. L. Wulf, M. B. McGirr, and G. R. Wallwork, Corros. Sci. 9, 739–754 (1968).Google Scholar
  112. 112.
    C. Wagner, J. Electrochem. Soc. 99, 369 (1952).Google Scholar
  113. 113.
    P. M. Strocchi, B. Vincentini, and V. Mosca, Electrochim. Metallorum 4(4), 339–345 (1969);Google Scholar
  114. 113a.
    P. M. Strocchi, B. Vincentini, and V. Mosca, Met. Ital. (Atti Notizie) 4, 120–121 (1970).Google Scholar
  115. 114.
    D. M. Dovey and I. Jenkins, J. Inst. Metals 76, 581 (1950).Google Scholar
  116. 115.
    L. B. Pfeil, Chem. Ind. 208 (1955).Google Scholar
  117. 116.
    V. Marion, Ann. Physik 7, 502 (1937).Google Scholar
  118. 117.
    N. Spooner, J. M. Thomas, and L. Thomassen, J. Metals 5, 844 (1953).Google Scholar
  119. 118.
    E. H. Buchnall and L. E. Price, Rev. Met. 45, 129 (1948).Google Scholar
  120. 119.
    H. R. Copson and F. S. Lang, Corrosion 15, 194t–198t (1959).Google Scholar
  121. 120.
    Metals Handbook, 8th ed., Vol. 1, pp. 620–625, American Society for Metals, Metals Park, Ohio (1961).Google Scholar
  122. 121.
    W. Betteridge, The Nimonic Alloys, p. 233, Edward Arnold, London (1959).Google Scholar
  123. 122.
    A. Tumarev and L. Panyushin, Izv. Vyssh. Uch. Zav. Chem. Met. 2(9), 125–131 (1959).Google Scholar
  124. 123.
    P. R. Belcher, R. J. Bird, and R. W. Wilson, The ‘Black Plague’ Corrosion of Aircraft Turbine Blades, in Hot Corrosion Problems Associated with Gas Turbines, pp. 123–145, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).Google Scholar
  125. 124.
    A. U. Seybolt, Trans. Met. Soc. AIME 242, 1955–1961 (1968).Google Scholar
  126. 125.
    F. J. Watt and S. T. Michael, Effect of Sulfate Salts on Corrosion Resistance of Gas Turbine Alloys, in Hot Corrosion Problems Associated with Gas Turbines, pp. 223–245, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).Google Scholar
  127. 126.
    P. I. Fontaine and E. G. Richards, “Hot Corrosion of Nickel-Iron-Chromium-Cobalt Alloys by Sulfate-Chloride and Sulfate―Vanadate Simulated Fuel Ashes,“ in Hot Corrosion Problems Associated with Gas Turbines, pp. 246–269, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).Google Scholar
  128. 127.
    H. Lewis and R. A. Smith, Corrosion of High-Temperature Nickel-Base Alloys by Sulphate-Chloride Mixtures,“ in First Int. Congr. on Metallic Corrosion, 1961, pp. 202–214, Butterworths, London.Google Scholar
  129. 128.
    C. Sykes and H. T. Shirley, Scaling of Heat-Resisting Steels, Influence of Combustible Sulphur and Oil-Fuel Ash Constituents, Iron and Steel Institute Special Report No. 43, p. 169 (1952).Google Scholar
  130. 129.
    P. E. Hamilton, K. H. Ryan, and E. S. Nichols, Nickel-Base Alloys and Their Relationship to Hot Corrosive Environments, in Hot Corrosion Problems Associated with Gas Turbines, pp. 188–205, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).Google Scholar
  131. 130.
    E. A. Gulbransen, Advances in Catalysis and Related Subjects, V, pp. 119–175, Academic Press, New York (1953).Google Scholar
  132. 131.
    D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements, American Chemical Society, Washington, D.C. (1956).Google Scholar
  133. 132.
    D. T. Bourgette, Fuels and Materials Development Program Quart. Progr. Rept. Dec. 31, 1969, ORNL-4520, Oak Ridge National Laboratory, pp. 204–209.Google Scholar
  134. 133.
    D. T. Bourgette, ORNL-TM-1786, Oak Ridge National Laboratory (1967).Google Scholar
  135. 134.
    O. Kalvenes, K. Picne, and P. Kofstad, Corr. Sci. 4, 211–220 (1964).Google Scholar
  136. 135.
    E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc. 104, 334 (1957)Google Scholar
  137. 135a.
    E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc.106, 294, 941 (1959).Google Scholar
  138. 136.
    E. M. Mahla and N. A. Nielson, Trans. ASM 43, 290 (1950).Google Scholar
  139. 137.
    Landolt-Bornstein, Zahlenwerte und Funktionen, IV Band, Technik 2 Teil, Springer, Berlin (1963).Google Scholar
  140. 138.
    C. J. Smithells, Metals Reference Book, Butterworths, London (1962).Google Scholar
  141. 139.
    Th. Heumann and H. Böhmer, Arch. Eisenhuttenw. 31, 749 (1960).Google Scholar
  142. 140.
    B. Strauss, H. Sehottky, and J. Hinnüber, Z. Anorg. Allg. Chem. 188, 309 (1930).Google Scholar
  143. 141.
    E. C. Bain, R. H. Aborn, and J. J. B. Rutherford, Trans. Am. Soc. Steel Treat. 21, 481 (1933).Google Scholar
  144. 142.
    W. Betteridge and A. W. Fanklin, J. Inst. Metals 85, 473 (1956/57).Google Scholar
  145. 143.
    J. Philibert, C. Crussard, X. Wache, and M. Gerber, C. R. H. Acad. Sci. 251, 1289 (1960).Google Scholar
  146. 144.
    M. J. Fleetwood, J. Inst. Metals 90, 429 (1961/62).Google Scholar
  147. 145.
    S. Alm and R. Kiessling, J. Inst. Metals 91, 190 (1963).Google Scholar
  148. 146.
    V. Cihal and M. Prazak, Corrosion 16, 530t–532t (1960).Google Scholar
  149. 147.
    E. C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, Cleveland, Ohio (1939).Google Scholar
  150. 148.
    K. Shiobara, Y. Sawada, and S. Morioka, Trans. Japan. Inst. Metals 6, 58 (1965).Google Scholar
  151. 149.
    H. G. Feller and H. H. Uhlig, J. Electrochem. Soc. 107, 864 (1960).Google Scholar
  152. 150.
    K. Osozawa, K. Bohnenkamp, and H.-J. Engell, Corr. Sci. 6, 421–433 (1966).Google Scholar
  153. 151.
    A. Bäumel, H. E. Buhler, H. J. Schuller, P. Schwaab, W. Schwenk, H. Ternes, and H. Zitter, Corr. Sci. 4, 89–103 (1964).Google Scholar
  154. 152.
    R. Stickler and A. Vinckler, Corr. Sci. 3, 1 (1963).Google Scholar
  155. 153.
    R. Stickler and A. Vinckler, Trans. Am. Soc. Metals 54, 362 (1961).Google Scholar
  156. 154.
    P. Schafmeister, Arch. Eisenhuttenw. 10, 105 (1937).Google Scholar
  157. 155.
    W. Brauns and G. Pier, Stahl Eisen 75, 579 (1955).Google Scholar
  158. 156.
    J. Voeltzel and J. Plateau, C. R. H. Acad. Sci. 252, 2705 (1961).Google Scholar
  159. 157.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1962).Google Scholar
  160. 158.
    J. Bénard, l'Oxydation des Métaux, Vol. II, Gauthier-Villars, Paris (1964).Google Scholar
  161. 159.
    P. J. Gellings and M. A. deJongh, Corr. Sci. 7, 413–421 (1967).Google Scholar
  162. 160.
    S. Alm and R. Kiessling, J. Inst. Metals 91(5), 190 (1962/63).Google Scholar
  163. 161.
    A. P. Gulyaev and K. E. Miroshnikova, Metalloved. Term. Obrab. Metal 12, 2 (1965).Google Scholar
  164. 162.
    B. E. Hopkinson and K. G. Carroll, Nature 184, 1479 (1959).Google Scholar
  165. 163.
    K. T. Aust, J. S. Armijo, E. F. Koch, and J. H. Westbrook, ASM Trans. Quart. 60, 360 (1967).Google Scholar
  166. 164.
    K. T. Aust, J. S. Armijo, and J. H. Westbrook, ASM Trans. Quart. 59, 544 (1966).Google Scholar
  167. 165.
    K. T. Aust, Trans. Met. Soc. AIME 245, 2117–2126 (1969).Google Scholar
  168. 166.
    A. Paul Bond, Trans. Met. Soc. AIME 245, 2127–2134 (1969).Google Scholar
  169. 167.
    A. Bäumel, Arch. Eisenhüttenw. 34, 135 (1963).Google Scholar
  170. 168.
    C. S. Tedmon, Jr., D. A. Vermilyea, and J. H. Rosolowski, J. Electrochem. Soc. 118, 192 (1971).Google Scholar
  171. 169.
    M. H. Brown, Corrosion 25, 438 (1968).Google Scholar
  172. 170.
    E. L. Raymond, Corrosion 24, 180–188 (1968).Google Scholar
  173. 171.
    Ph. Berge, Corr. Sci. 10, 185–189 (1970).Google Scholar
  174. 172.
    C. S. Tedmon, Jr. and D. A. Vermilyea, Corrosion 27, 376–381 (1971).Google Scholar
  175. 173.
    N. D. Tomashov, Theory of Corrosion and Protection of Metals, MacMillan, New York (1966).Google Scholar
  176. 174.
    H. R. Copson, B. E. Hopkinson, and F. S. Lang, Proc. ASTM 61, 879 (1961).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations