Skip to main content

Chromium Depletion and Void Formation in Fe—Ni—Cr Alloys During Molten Salt Corrosion and Related Processes

  • Chapter
Advances in Corrosion Science and Technology

Abstract

This chapter will discuss the processes that can cause chromium depletion in Fe—Ni—Cr alloys and the effect of the chromium-depleted layer on the subsequent corrosion resistance of the alloy. In general, the alloys discussed will be iron or nickel based. For completeness we will include alloys that contain constituents other than iron, nickel, or chromium, but only in cases where chromium depletion plays a major part in the process of interest.

Research sponsored by the U.S. Atomic Energy Commission under contract with Union Carbide Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Glassner, ANL-5750, Argonne National Laboratory (1957).

    Google Scholar 

  2. G. M. Adamson, R. S. Crouse, and W. D. Manly, ORNL-2337, Oak Ridge National Laboratory (March 20, 1959).

    Google Scholar 

  3. G. M. Adamson, R. S. Crouse, and W. D. Manly, ORNL-2338, Oak Ridge National Laboratory (Jan. 3, 1961).

    Google Scholar 

  4. A. de S. Brasunas, Metals Progr. 62(6), 88 (1952).

    Google Scholar 

  5. W. D. Manly, Corrosion Behavior of Fused Fuels, in Proc. 2nd Fluid Fuels Development Conf., pp. 370–412, Oak Ridge National Laboratory, April 1952, ORNL-CF-52–4–197.

    Google Scholar 

  6. Metals Handbook, American Society for Metals, Cleveland, Ohio (1948), p. 1046.

    Google Scholar 

  7. P. D. Miller, C. L. Peterson, O. M. Steward, E. F. Stephan, and F. W. Fink, BMI-1348, Battelle Memorial Institute (June 3, 1959).

    Google Scholar 

  8. W. D. Manly, J. H. Coobs, J. H. De Van, D. A. Douglas, H. Inouye, P. Patriarca, T. K. Roche, and J. L. Scott, Metallurgical Problems in Molten Fluoride Systems, in Progress in Nuclear Energy Series IV 2, 164–179 (1960).

    Google Scholar 

  9. R. W. Balluffi and B. H. Alexander, SEP-83, Sylvania Electric Products (February 1952).

    Google Scholar 

  10. MSR Prog. Semiann. Progr. Rept. July 31, 1964, ORNL-3708, pp. 330–342, Oak Ridge National Laboratory.

    Google Scholar 

  11. MSR Prog. Semiann. Progr. Rept. July 31, 1960, ORNL-3014, pp. 55–58, Oak Ridge National Laboratory.

    Google Scholar 

  12. J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. February 29, 1968, ORNL-4354, pp. 218–225, Oak Ridge National Laboratory.

    Google Scholar 

  13. J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. August 31, 1968, ORNL-4344, pp. 257–266, Oak Ridge National Laboratory.

    Google Scholar 

  14. W. J. Hamer, M. S. Malmberg, and B. Rubin, J. Electrochem. Soc. 112, 750 (1965).

    Google Scholar 

  15. C. F. Baes, The Chemistry and Thermodynamics of Molten Salt-Reactor Fluoride Solutions, in Thermodynamics, Vol. I, pp. 409–433, International Atomic Energy Agency, Vienna (1966).

    Google Scholar 

  16. H. W. Jenkins, G. Mamantov, and D. L. Manning, unpublished work cited by G. Mamantov, in Molten Salts, Characterization and Analysis, pp. 539–540 (G. Mamantov, ed.), Marcel Dekker, New York (1969).

    Google Scholar 

  17. J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. February 28, 1969, ORNL-4396, pp. 243–253, Oak Ridge National Laboratory.

    Google Scholar 

  18. J. W. Koger and A. P. Litman, MSR Prog. Semiann. Progr. Rept. August 31, 1969, ORNL-4449, pp. 195–208, Oak Ridge National Laboratory.

    Google Scholar 

  19. J. W. Koger, MSR Prog. Semiann. Progr. Rept. February 28, 1970, ORNL-4548, pp. 240–252, Oak Ridge National Laboratory.

    Google Scholar 

  20. J. W. Koger, MSR Prog. Semiann. Progr. Rept. August 31, 1970, ORNL-4622, pp. 165–178, Oak Ridge National Laboratory.

    Google Scholar 

  21. J. W. Koger, MSR Prog. Semiann. Progr. Rept. February 28, 1971, ORNL-4676, pp. 192–215, Oak Ridge National Laboratory.

    Google Scholar 

  22. R. B. Evans III, J. W. Koger, and J. H. De Van, ORNL-4575, Vol. II, Oak Ridge National Laboratory (June 1971).

    Google Scholar 

  23. R. V. Churchill, Modern Operational Mathematics in Engineering, 1st ed., pp. 109–112, McGraw-Hill, New York (1950).

    Google Scholar 

  24. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., pp. 58–61, Oxford University Press, New York (1959).

    Google Scholar 

  25. R. B. Evans III, ANP Prog. Quart. Progr. Rept. Dec. 31, 1957, ORNL-2440, pp. 104–113, Oak Ridge National Laboratory.

    Google Scholar 

  26. W. R. Grimes, G. M. Watson, J. H. De Van, and R. B. Evans, Radio Tracer Techniques in the Study of Corrosion by Molten Fluorides, in Conf. Use of Radioisotopes in the Physical Sciences and Industry, September 1960, Proc. Vol. III, pp. 559–574, International Atomic Energy Agency, Vienna (1962).

    Google Scholar 

  27. R. B. Evans III, J. H. DeVan, and G. M. Watson, Self-Diffusion of Chromium in Nickel-Base Alloys, ORNL-2982, Oak Ridge National Laboratory (January 1961).

    Google Scholar 

  28. J. H. Jackson and M. H. LaChance, Trans. ASM 46, 157–183 (1954).

    Google Scholar 

  29. R. Bakish and F. Kern, Corrosion 16, 533t–534t (1960).

    Google Scholar 

  30. L. L. Quill, The Chemistry and Metallurgy of Miscellaneous Materials, Thermodynamics, McGraw-Hill, New York (1950).

    Google Scholar 

  31. H. A. Laitinen and C. H. Liu, J. Am. Chem. Soc. 80(5), 1015 (1958).

    Google Scholar 

  32. S. I. Stepanov, E. B. Kachina-Pullo, V. N. Devyatkin, and E. A. Ukshe, Investigation of Corrosion Processes in Molten Chlorides, in Surface Phenomena in Metallurgical Processes, pp. 203–210 (A.I. Belyaev, ed.), transl. by Consultants Bureau, New York (1965).

    Google Scholar 

  33. V. P. Kochergin, A. V. Kabirov, and O. N. Skornyakova, Zh. Prikl. Khim. 27, 944 (1954), as cited in Ref. 32.

    Google Scholar 

  34. V. P. Kochergin, M. S. Garpinenko, O. N. Skornyakova, and I. Sh. Minulina, Zh. Prikl. Khim. 29, 566 (1956), as cited in Ref. 32.

    Google Scholar 

  35. V. P. Kochergin and G. I. Stolyarova, Zh. Prikl. Khim. 29, 730 (1956), as cited in Ref. 32.

    Google Scholar 

  36. N. D. Tomashov and N. I. Tugarinov, Zh. Prikl Khim. 30, 1619 (1957), as cited in Ref. 32.

    Google Scholar 

  37. Yu. K. Delimarskii and B. F. Markov, Electrochemistry of Molten Salts, Metallurgizdat (1960), as cited in Ref. 32.

    Google Scholar 

  38. C. Edeleanu and R. Littlewood, Electrochim. Acta 3, 195 (1960).

    Google Scholar 

  39. R. Littlewood, Electrochim. Acta 3, 270 (1961).

    Google Scholar 

  40. C. Edeleanu, J. G. Gibson, and J. E. Meredith, J. Iron Steel Inst. 196, 59 (1960).

    Google Scholar 

  41. C. Edeleanu and J. G. Gibson, J. Inst. Metals 88, 321 (1959).

    Google Scholar 

  42. R. Littlewood, J. Electrochem. Soc. 109, 525–534 (1962).

    Google Scholar 

  43. R. Littlewood and C. Edeleanu, Silicates Industrieis 26, 447 (1961).

    Google Scholar 

  44. R. Littlewood and E. J. Argent, Electrochim. Acta 4, 114 (1961); 4, 155 (1961).

    Google Scholar 

  45. J. W. Koger, Oak Ridge National Laboratory, unpublished results.

    Google Scholar 

  46. C. Edeleanu, J. G. Gibson, and J. E. Meredith, Effects of Diffusion on Corrosion of Metals by Fused Salts, in Proprietes des Joints de Grains, pp. 71–74, 4e Colloque de Metallurgie, June 1960, Saclay, France, Presses Universitaries de France (1961).

    Google Scholar 

  47. A. U. Seybolt, Oxid. Metals 2, 119–143 (1970).

    Google Scholar 

  48. A. Moskowitz and L. Redmerski, WADD-TR-60–115, Wright Air Development Division (February 1960).

    Google Scholar 

  49. E. E. Hoffman and W. D. Manly, Corrosion Resistance of Metals and Alloys to Sodium and Lithium (Advan. Chem. Ser. No. 19), pp. 1182–1191, Am. Chem. Soc, Washington, D.C. (1957).

    Google Scholar 

  50. W. D. Manly, Corrosion 12, 336–342 (1956).

    Google Scholar 

  51. R. E. Seebold, L. S. Birks, and E. J. Brooks, Corrosion 16, 468t–470t (1960).

    Google Scholar 

  52. J. D. Mottley, GEAP-4313, General Electric Co. (1964).

    Google Scholar 

  53. J. R. Weeks, C. J. Klamut, and D. H. Gurinsky, in Alkali Metal Coolants, pp. 3–22, International Atomic Energy Agency, Vienna (1967).

    Google Scholar 

  54. A. W. Thorley and C. Tyzack, in Alkali Metal Coolants, pp. 97–118, International Atomic Energy Agency, Vienna (1967).

    Google Scholar 

  55. A. W. Thorley and J. A. Bardsley, J. Roy. Microscop. Soc. 88, 431–447 (1968).

    Google Scholar 

  56. P. Roy, D. Dutina, and F. Comprelli, in Corrosion by Liquid Metals, pp. 1–20 (J. E. Draley and J. R. Weeks, eds.) (1970).

    Google Scholar 

  57. E. L. Zebroski, R. S. Young, and F. A. Comprelli, in Alkali Metal Coolants, pp. 195–211, International Atomic Energy Agency, Vienna (1967).

    Google Scholar 

  58. A. J. Romano, S. J. Wachtel, and C. J. Klamut, ANL-7520, Argonne National Laboratory, Part 1, pp. 151–152 (1968).

    Google Scholar 

  59. M. C. Rowland, D. E. Plumlee, and R. S. Young, GEAP-4831, General Electric Co. (1965).

    Google Scholar 

  60. G. C. Wood, Corros. Sci. 2, 173–196 (1961).

    Google Scholar 

  61. G. C. Wood and D. A. Melford, J. Iron Steel Inst. 198, 142 (1961).

    Google Scholar 

  62. H. H. Uhlig, The Corrosion Handbook, Wiley, New York (1948).

    Google Scholar 

  63. V. V. Ipat’ev and G. M. Orlova, Uch. Zap. Leningrad Gos. Univ. Ser. Khim. Nauk. 14, 128 (1954).

    Google Scholar 

  64. I. I. Kornilov and A. I Shpikelman, Dokl. Akad. Nauk. SSSR 53, 813 (1946); 54, 511 (1946).

    Google Scholar 

  65. T. P. Hoar and E. A. G. Croom, J. Iron Steel Inst. 196, 101 (1951).

    Google Scholar 

  66. H. W. Paxton and E. J. Pasierb, Trans. Met. Soc. AIME 218, 794 (1960).

    Google Scholar 

  67. H. W. Paxton and T. Kunitake, Trans. Met. Soc. AIME 218, 1003 (1960).

    Google Scholar 

  68. G. C. Wood and D. P. Whittle, Corr. Sci. 7, 773–782 (1967).

    Google Scholar 

  69. D. P. Whittle and G. C. Wood, J. Electrochem. Soc. 114, 986–991 (1967).

    Google Scholar 

  70. G. C. Wood and D. P. Whittle, Corr. Sci. 4, 263–292 (1964).

    Google Scholar 

  71. G. C. Wood and D. P. Whittle, Corr. Sci. 4, 293–313 (1964).

    Google Scholar 

  72. D. Caplan, Corr. Sci. 6, 509–515 (1966).

    Google Scholar 

  73. V. R. Howes, Corr. Sci. 7, 469–471 (1967).

    Google Scholar 

  74. G. C. Wood and D. P. Whittle, J. Electrochem. Soc. 115, 126–142 (1968).

    Google Scholar 

  75. D. Mortimer and M. L. Post, Corr. Sci. 8, 498–512 (1968).

    Google Scholar 

  76. V. R. Howes, Corr. Sci. 8, 221–224 (1968).

    Google Scholar 

  77. V. R. Howes, Corr. Sci. 8, 729–736 (1968).

    Google Scholar 

  78. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood, Acta Met. 15, 1421 (1967).

    Google Scholar 

  79. G. C. Wood and J. Boustead, Corr. Sci. 8, 719–723 (1968).

    Google Scholar 

  80. M. G. Hobby, M. Sci. Thesis, University of Manchester (1968).

    Google Scholar 

  81. G. C. Wood and M. G. Hobby, in Proc. 3rd Int. Congr. Metallic Corrosion Moscow, 1966, Swets and Zeitlinger, N.V., Amsterdam.

    Google Scholar 

  82. D. Caplan and M. Cohen, Trans. AIME 194, 1057 (1952).

    Google Scholar 

  83. G. C. Wood and M. G. Hobby, J. Iron Steel Inst. 203, 54 (1965).

    Google Scholar 

  84. A. U. Seybolt, J. Electrochem. Soc. 107, 147–156 (1960).

    Google Scholar 

  85. G. C. Wood and T. Hodgekiess, J. Electrochem. Soc. 113, 319–327 (1966).

    Google Scholar 

  86. G. C. Wood, T. Hodgekiess, and D. P. Whittle, Corr. Sci. 6, 129–147 (1966).

    Google Scholar 

  87. R. V. Trax and J. C. Holzworth, Corrosion 16, 271t–274t (1960).

    Google Scholar 

  88. L. S. Redmerski and A. Moskowitz, Trans. AIME 245, 2165–2173 (1969).

    Google Scholar 

  89. T. Ericcson, Oxid. Metals 2, 401–417 (1970).

    Google Scholar 

  90. S. Leistikow, H. v. Berg, and E. Pott, KFK-1301, Kernforschungszentrum Karlsruhe (1971).

    Google Scholar 

  91. H. Coriou, L. Grall, C. Mahieu, and M. Pelras, Rev. Met. 65, 643–650 (1968).

    Google Scholar 

  92. W. L. Pearl and S. Leistikow, GEAP-5175, General Electric Co., pp. 16–8–16–12 (1966).

    Google Scholar 

  93. S. Leistikow, E. Pott, and H. v. Berg, KFK-1054, Kernforschungszentrum Karlsruhe (1969); KFK-1301 Kernforschungszentrum Karlsruhe (1971).

    Google Scholar 

  94. S. Leistikow, in Proc. 4th Int. Congr. Met. Corr., Amsterdam, 1969, National Association of Corrosion Engineers, Houston, Texas (1972).

    Google Scholar 

  95. W. Stiefel, Tech. Rundsch. Sulzer 3, 21–27 (1961).

    Google Scholar 

  96. W. E. Ruther, in Proc. Nucl. Superheat Meeting, Idaho Falls, COO–267 (1963).

    Google Scholar 

  97. M. Warzée, M. Maurice, C. Sonnen, J. Waty, and Ph. Berge, Rev. Met. 61, 593–601 (1964).

    Google Scholar 

  98. M. Warzée, M. Maurice, J. Hennaut, J. Waty, and Ph. Berge, EUR-1735, European Atomic Energy Community (1964).

    Google Scholar 

  99. W. E. Ruther and S. Greenberg, J. Electrochem. Soc. 111, 1116–1121 (1964).

    Google Scholar 

  100. W. L. Pearl, E. G. Brush, G. G. Gaul, and G. P. Wozadlo, GEAP-4760, General Electric Company, p. 67–11 (1965).

    Google Scholar 

  101. M. Warzée, J. Hennauth, M. Maurice, C. Sonnen, and J. Waty, J. Electrochem. Soc. 112, 670–674 (1965).

    Google Scholar 

  102. M. Warzée, J. Hennauth, M. Maurice, and Ph. Berge, Mem. Sci. Rev. Met. 62(3), 239–247 (1965).

    Google Scholar 

  103. G. Ostberg, L. Unneberg, M. de Pourbaix, S. Jansson, W. Hübner, and L. Hammar, S-332, Aktiebolaget Atomenergi, Stockholm (1966).

    Google Scholar 

  104. M. Warzée, C. Sonnen, J. Cremer, and Ph. Berge, EUR-3387, European Atomic Energy Community (1967).

    Google Scholar 

  105. Ph. Berge, EUR-3776, European Atomic Energy Community (1968).

    Google Scholar 

  106. S. Jansson, W. Hübner, and M. de Pourbaix, Brit. Corros. J. 4, 21–31 (1969).

    Google Scholar 

  107. P. J. van Tilborg and A. van der Linda, RCN-109, Reactor Centrum Nederland (1969).

    Google Scholar 

  108. T. Ericsson, in Proc. 4th Int. Congr. Met. Corr., Amsterdam, 1969, National Association of Corrosion Engineers, Houston, Texas (1972).

    Google Scholar 

  109. W. L. Pearl, D. G. Brush, G. G. Gaul, and G. P. Wozadlo, Corrosion 21, 235–245 (1965).

    Google Scholar 

  110. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Met. 15, 1747–1755 (1967).

    Google Scholar 

  111. G. L. Wulf, M. B. McGirr, and G. R. Wallwork, Corros. Sci. 9, 739–754 (1968).

    Google Scholar 

  112. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  113. P. M. Strocchi, B. Vincentini, and V. Mosca, Electrochim. Metallorum 4(4), 339–345 (1969);

    Google Scholar 

  114. P. M. Strocchi, B. Vincentini, and V. Mosca, Met. Ital. (Atti Notizie) 4, 120–121 (1970).

    Google Scholar 

  115. D. M. Dovey and I. Jenkins, J. Inst. Metals 76, 581 (1950).

    Google Scholar 

  116. L. B. Pfeil, Chem. Ind. 208 (1955).

    Google Scholar 

  117. V. Marion, Ann. Physik 7, 502 (1937).

    Google Scholar 

  118. N. Spooner, J. M. Thomas, and L. Thomassen, J. Metals 5, 844 (1953).

    Google Scholar 

  119. E. H. Buchnall and L. E. Price, Rev. Met. 45, 129 (1948).

    Google Scholar 

  120. H. R. Copson and F. S. Lang, Corrosion 15, 194t–198t (1959).

    Google Scholar 

  121. Metals Handbook, 8th ed., Vol. 1, pp. 620–625, American Society for Metals, Metals Park, Ohio (1961).

    Google Scholar 

  122. W. Betteridge, The Nimonic Alloys, p. 233, Edward Arnold, London (1959).

    Google Scholar 

  123. A. Tumarev and L. Panyushin, Izv. Vyssh. Uch. Zav. Chem. Met. 2(9), 125–131 (1959).

    Google Scholar 

  124. P. R. Belcher, R. J. Bird, and R. W. Wilson, The ‘Black Plague’ Corrosion of Aircraft Turbine Blades, in Hot Corrosion Problems Associated with Gas Turbines, pp. 123–145, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).

    Google Scholar 

  125. A. U. Seybolt, Trans. Met. Soc. AIME 242, 1955–1961 (1968).

    Google Scholar 

  126. F. J. Watt and S. T. Michael, Effect of Sulfate Salts on Corrosion Resistance of Gas Turbine Alloys, in Hot Corrosion Problems Associated with Gas Turbines, pp. 223–245, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).

    Google Scholar 

  127. P. I. Fontaine and E. G. Richards, “Hot Corrosion of Nickel-Iron-Chromium-Cobalt Alloys by Sulfate-Chloride and Sulfate―Vanadate Simulated Fuel Ashes,“ in Hot Corrosion Problems Associated with Gas Turbines, pp. 246–269, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).

    Google Scholar 

  128. H. Lewis and R. A. Smith, Corrosion of High-Temperature Nickel-Base Alloys by Sulphate-Chloride Mixtures,“ in First Int. Congr. on Metallic Corrosion, 1961, pp. 202–214, Butterworths, London.

    Google Scholar 

  129. C. Sykes and H. T. Shirley, Scaling of Heat-Resisting Steels, Influence of Combustible Sulphur and Oil-Fuel Ash Constituents, Iron and Steel Institute Special Report No. 43, p. 169 (1952).

    Google Scholar 

  130. P. E. Hamilton, K. H. Ryan, and E. S. Nichols, Nickel-Base Alloys and Their Relationship to Hot Corrosive Environments, in Hot Corrosion Problems Associated with Gas Turbines, pp. 188–205, ASTM STP 421, American Society for Testing and Materials, Philadelphia (1967).

    Google Scholar 

  131. E. A. Gulbransen, Advances in Catalysis and Related Subjects, V, pp. 119–175, Academic Press, New York (1953).

    Google Scholar 

  132. D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements, American Chemical Society, Washington, D.C. (1956).

    Google Scholar 

  133. D. T. Bourgette, Fuels and Materials Development Program Quart. Progr. Rept. Dec. 31, 1969, ORNL-4520, Oak Ridge National Laboratory, pp. 204–209.

    Google Scholar 

  134. D. T. Bourgette, ORNL-TM-1786, Oak Ridge National Laboratory (1967).

    Google Scholar 

  135. O. Kalvenes, K. Picne, and P. Kofstad, Corr. Sci. 4, 211–220 (1964).

    Google Scholar 

  136. E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc. 104, 334 (1957)

    Google Scholar 

  137. E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc.106, 294, 941 (1959).

    Google Scholar 

  138. E. M. Mahla and N. A. Nielson, Trans. ASM 43, 290 (1950).

    Google Scholar 

  139. Landolt-Bornstein, Zahlenwerte und Funktionen, IV Band, Technik 2 Teil, Springer, Berlin (1963).

    Google Scholar 

  140. C. J. Smithells, Metals Reference Book, Butterworths, London (1962).

    Google Scholar 

  141. Th. Heumann and H. Böhmer, Arch. Eisenhuttenw. 31, 749 (1960).

    Google Scholar 

  142. B. Strauss, H. Sehottky, and J. Hinnüber, Z. Anorg. Allg. Chem. 188, 309 (1930).

    Google Scholar 

  143. E. C. Bain, R. H. Aborn, and J. J. B. Rutherford, Trans. Am. Soc. Steel Treat. 21, 481 (1933).

    Google Scholar 

  144. W. Betteridge and A. W. Fanklin, J. Inst. Metals 85, 473 (1956/57).

    Google Scholar 

  145. J. Philibert, C. Crussard, X. Wache, and M. Gerber, C. R. H. Acad. Sci. 251, 1289 (1960).

    Google Scholar 

  146. M. J. Fleetwood, J. Inst. Metals 90, 429 (1961/62).

    Google Scholar 

  147. S. Alm and R. Kiessling, J. Inst. Metals 91, 190 (1963).

    Google Scholar 

  148. V. Cihal and M. Prazak, Corrosion 16, 530t–532t (1960).

    Google Scholar 

  149. E. C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, Cleveland, Ohio (1939).

    Google Scholar 

  150. K. Shiobara, Y. Sawada, and S. Morioka, Trans. Japan. Inst. Metals 6, 58 (1965).

    Google Scholar 

  151. H. G. Feller and H. H. Uhlig, J. Electrochem. Soc. 107, 864 (1960).

    Google Scholar 

  152. K. Osozawa, K. Bohnenkamp, and H.-J. Engell, Corr. Sci. 6, 421–433 (1966).

    Google Scholar 

  153. A. Bäumel, H. E. Buhler, H. J. Schuller, P. Schwaab, W. Schwenk, H. Ternes, and H. Zitter, Corr. Sci. 4, 89–103 (1964).

    Google Scholar 

  154. R. Stickler and A. Vinckler, Corr. Sci. 3, 1 (1963).

    Google Scholar 

  155. R. Stickler and A. Vinckler, Trans. Am. Soc. Metals 54, 362 (1961).

    Google Scholar 

  156. P. Schafmeister, Arch. Eisenhuttenw. 10, 105 (1937).

    Google Scholar 

  157. W. Brauns and G. Pier, Stahl Eisen 75, 579 (1955).

    Google Scholar 

  158. J. Voeltzel and J. Plateau, C. R. H. Acad. Sci. 252, 2705 (1961).

    Google Scholar 

  159. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1962).

    Google Scholar 

  160. J. Bénard, l'Oxydation des Métaux, Vol. II, Gauthier-Villars, Paris (1964).

    Google Scholar 

  161. P. J. Gellings and M. A. deJongh, Corr. Sci. 7, 413–421 (1967).

    Google Scholar 

  162. S. Alm and R. Kiessling, J. Inst. Metals 91(5), 190 (1962/63).

    Google Scholar 

  163. A. P. Gulyaev and K. E. Miroshnikova, Metalloved. Term. Obrab. Metal 12, 2 (1965).

    Google Scholar 

  164. B. E. Hopkinson and K. G. Carroll, Nature 184, 1479 (1959).

    Google Scholar 

  165. K. T. Aust, J. S. Armijo, E. F. Koch, and J. H. Westbrook, ASM Trans. Quart. 60, 360 (1967).

    Google Scholar 

  166. K. T. Aust, J. S. Armijo, and J. H. Westbrook, ASM Trans. Quart. 59, 544 (1966).

    Google Scholar 

  167. K. T. Aust, Trans. Met. Soc. AIME 245, 2117–2126 (1969).

    Google Scholar 

  168. A. Paul Bond, Trans. Met. Soc. AIME 245, 2127–2134 (1969).

    Google Scholar 

  169. A. Bäumel, Arch. Eisenhüttenw. 34, 135 (1963).

    Google Scholar 

  170. C. S. Tedmon, Jr., D. A. Vermilyea, and J. H. Rosolowski, J. Electrochem. Soc. 118, 192 (1971).

    Google Scholar 

  171. M. H. Brown, Corrosion 25, 438 (1968).

    Google Scholar 

  172. E. L. Raymond, Corrosion 24, 180–188 (1968).

    Google Scholar 

  173. Ph. Berge, Corr. Sci. 10, 185–189 (1970).

    Google Scholar 

  174. C. S. Tedmon, Jr. and D. A. Vermilyea, Corrosion 27, 376–381 (1971).

    Google Scholar 

  175. N. D. Tomashov, Theory of Corrosion and Protection of Metals, MacMillan, New York (1966).

    Google Scholar 

  176. H. R. Copson, B. E. Hopkinson, and F. S. Lang, Proc. ASTM 61, 879 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Koger, J.W. (1974). Chromium Depletion and Void Formation in Fe—Ni—Cr Alloys During Molten Salt Corrosion and Related Processes. In: Fontana, M.G., Staehle, R.W. (eds) Advances in Corrosion Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9059-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9059-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9061-3

  • Online ISBN: 978-1-4615-9059-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics