Advertisement

Anodic Dissolution of Metals—Anomalous Valence

Chapter

Abstract

When metals are dissolved anodically in aqueous and nonaqueous media, the weight of metal dissolved is sometimes greater than that calculated from Faraday’s law assuming normal oxidation states. Among several metals of industrial importance, Al, Be, Cd, Fe, Pb, Mg, Ti, and Zn exhibit this phenomenon. The usual implication is that these metals dissolve as ions with an ionic valence or oxidation number less than normal, e.g., Mg+, Be+, etc.

Keywords

Anodic Dissolution Metallic Particle Anode Surface Deformation Twin Difference Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Wöhler and H. Buff, Liebigs Ann. 103, 218 (1857).Google Scholar
  2. 2.
    I. E. Epelboin, Z. Elektrochem. 59, 689 (1955).Google Scholar
  3. 3.
    B. D. Laughlin, J. Kleinberg, and A. W. Davidson, J. Am. Chem. Soc. 78, 559 (1956).Google Scholar
  4. 4.
    M. D. Rausch, W. E. McEwen, and J. Kleinberg, J. Am. Chem. Soc. 76, 363 (1954).Google Scholar
  5. 5.
    M. D. Rausch, W. E. McEwen, and J. Kleinberg, J. Am. Chem. Soc. 76, 3622 (1954).Google Scholar
  6. 6.
    D. T. Sorenson, A. W. Davidson, and J. Kleinberg, J. Am. Chem. Soc. 85, 1354 (1963).Google Scholar
  7. 7.
    G. Beetz, Phil. Mag. 32, 269 (1866).Google Scholar
  8. 8.
    G. Baborovsky, Z. Elektrochem. 11, 465 (1905).Google Scholar
  9. 9.
    M. C. del Boca, Helv. Chim. Acta 16, 565 (1933).Google Scholar
  10. 10.
    M. E. Straumanis and D. L. Mathis, J. Less Common Metals 4, 213 (1962).Google Scholar
  11. 11.
    M. E. Straumanis and D. L. Mathis, J. Electrochem. Soc. 109, 434 (1962).Google Scholar
  12. 12.
    J. O’M. Bockris, J. Electrochem. Soc. 107, 960 (1960).Google Scholar
  13. 13.
    K. E. Heusler, Z. Electrochem. 65, 192 (1961).Google Scholar
  14. 14.
    W. J. James and G. E. Stoner, J. Am. Chem. Soc. 85, 1354 (1963).Google Scholar
  15. 15.
    G. E. Stoner, The Anodic Oxidation of Zinc in Aqueous Solution, MS Thesis, University of Missouri-Rolla (1964).Google Scholar
  16. 16.
    T. P. Hoar, Private communication (1962).Google Scholar
  17. 17.
    M. E. Straumanis, J. Electrochem. Soc. 108, 1087 (1961).Google Scholar
  18. 18.
    L. Whitby, Trans. Faraday Soc. 29, 1318 (1933).Google Scholar
  19. 19.
    H. A. Robinson, Trans. Electrochem. Soc. 96, 499 (1946).Google Scholar
  20. 20.
    R. Glicksman, J. Electrochem. Soc. 106, 85 (1959).Google Scholar
  21. 21.
    N. D. Thomashov, V. S. Komessarova, and M. A. Timanova, Tr. Inst. Fiz. Khim., Akad. Nauk SSSR, 5, Issled. Korrozil Metal 1955 (4), 172.Google Scholar
  22. 22.
    J. W. Johnson, C. K. Chi, and W. J. James, Corrosion 23, 204 (1967).Google Scholar
  23. 23.
    E. D. Kochman and G. S. Vozdvizhenski, Anodnoya Zaschita Metallov., Kazansk. Aviats. Inst. 1964, 360–75.Google Scholar
  24. 24.
    F. Krochmal and M. Stencel, Zeszyty Nauk, Univ. Poznanic, Mat. Fiz. Chem. 1962, 34–43.Google Scholar
  25. 25.
    F. Krochmal and M. Beltowsha, Zeszyty Nauk, Univ. Poznanic, Mat. Fiz. Chem. 1963, 61.Google Scholar
  26. 26.
    F. Krochmal, Zeszyty Nauk, Univ. Poznanic, Mat. Fiz. Chem. 1964, 47–51.Google Scholar
  27. 27.
    V. N. Flerov, Izv. Vzaskikh Uch. Zav. Khim. Tekhnol. 1963, 449–54.Google Scholar
  28. 28.
    A. Thiel and J. Eckell, Z. Elektrochem. 33, 370 (1927).Google Scholar
  29. 29.
    A. Thiel and J. Eckell, Korrosion u. Metallschutz 4, 121 (1928)Google Scholar
  30. 29a.
    A. Thiel and J. Eckell, Korrosion u. Metallschutz 4, 145 (1928).Google Scholar
  31. 30.
    G. A. Marsh and E. Schaschl, J. Electrochem. Soc. 107, 960 (1960).Google Scholar
  32. 31.
    M. A. Streicher, J. Electrochem. Soc. 93, 285 (1948).Google Scholar
  33. 32.
    W. J. Müller, Trans. Electrochem. Soc. 76, 167 (1939).Google Scholar
  34. 33.
    M. E. Straumanis and Y. N. Wang, J. Electrochem. Soc. 102, 304 (1955).Google Scholar
  35. 34.
    M. E. Straumanis, W. J. James, and W. C. Custead, J. Electrochem. Soc. 107, 502 (1960).Google Scholar
  36. 35.
    W. J. James, J. W. Johnson, and M. E. Straumanis, Z. Physik. Chem. 27, 134 (1961).Google Scholar
  37. 36.
    G. V. Akimov, Theory and Research Methods of Metallic Corrosion, Publishing House of the Academy of Science, USSR, Moscow (1945).Google Scholar
  38. 37.
    G. V. Akimov, Usp. Khim. 12, 374 (1943)Google Scholar
  39. 37a.
    N. D. Tomashov, Theory of Corrosion and Protection of Metals, Macmillan, New York (1966), p. 257.Google Scholar
  40. 38.
    N. D. Tomashov and N. N. Modestova, Proc. Inst. Phys. Chem. USSR Acad. Sci. 1(1951).Google Scholar
  41. 39.
    N. D. Tomashov, Proc. USSR Acad Sci. 24, 2 (1939).Google Scholar
  42. 40.
    D. V. Kokoulina and B. N. Kabanov, Dokl, Akad. Nauk SSSR 112, 692 (1957).Google Scholar
  43. 41.
    W. J. James, M. E. Straumanis, D. K. Bhatia, and J. W. Johnson, J. Electrochem. Soc. 109, 1996 (1962).Google Scholar
  44. 42.
    M. Garreau, Metaux, Corrosion, Industrie 541, 3 (1970).Google Scholar
  45. 43.
    W. E. Bennett, A. W. Davidson, and J. Kleinberg, J. Am. Chem. Soc. 74, 731 (1952).Google Scholar
  46. 44.
    I. Epelboin, M. Froment, and G. Nomarski, Rev. Metall 55, 260 (1958).Google Scholar
  47. 45.
    M. Froment, Thesis 1958; Corrosion et anticorrosion 6, 412 (1958).Google Scholar
  48. 46.
    I. Epelboin and M. Froment, Compt. Rend. 238, 2416 (1954).Google Scholar
  49. 47.
    Ph. Brouillet, I. Epelboin, and M. Froment, Compt. Rend. 239, 1795 (1954).Google Scholar
  50. 48.
    I. Epelboin and M. Froment, Metaux, Corrosion, Industrie, 32, 55 (1937).Google Scholar
  51. 49.
    M. D. Rausch, W. E. McEwen, and J. Kleinberg, J. Am. Soc. 77, 203 (1955).Google Scholar
  52. 50.
    Ph. Brouillet and F. Monnot, Bull. Soc. Franc. Electriciens 8, 498 (1958).Google Scholar
  53. 51.
    M. Froment, Bull Soc. Franc. Electriciens 8, 505 (1958).Google Scholar
  54. 52.
    M. E. Straumanis, J. Electrochem. Soc. 105, 284 (1958).Google Scholar
  55. 53.
    M. E. Straumanis, J. Electrochem. Soc. 106, 535 (1959).Google Scholar
  56. 54.
    B. Roald and M. A. Streicher, J. Electrochem. Soc. 97, 283 (1950).Google Scholar
  57. 55.
    E. Raijola and A. W. Davidson, J. Am. Chem. Soc. 78, 556 (1956).Google Scholar
  58. 56.
    R. C. Plumb, J. Electrochem. Soc. 105, 498 (1956).Google Scholar
  59. 57.
    H. W. McCune, J. Electrochem. Soc. 106, 63 (1959).Google Scholar
  60. 58.
    V. A. Dmitriev, O. I. Avdeeva, and Y. I. Sozin, Dokl. Akad. Nauk SSSR, Khim. 6, 176 (1961).Google Scholar
  61. 59.
    M. E. Straumanis and K. Poush, J. Electrochem. Soc. 112, 1185 (1965).Google Scholar
  62. 60.
    M. Garreau, Metaux, Corrosion, Industrie 544, 1 (1970).Google Scholar
  63. 61.
    A. W. Davidson and F. Jirik, J. Am. Chem. Soc. 72, 1700 (1950).Google Scholar
  64. 62.
    J. D. Corbett, Inorg. Chem. 3, 634 (1964).Google Scholar
  65. 63.
    K. Schug and A. Sadowski, J. Am. Chem. Soc. 83, 3538 (1961).Google Scholar
  66. 64.
    M. E. Straumanis and K. A. Poush, J. Electrochem. Soc. 111, 795 (1964).Google Scholar
  67. 65.
    O. Stelling, Z. Elektrochem. 41, 712 (1935).Google Scholar
  68. 66.
    M. E. Straumanis and R. L. Martin, Z. Anorg. Allg. Chemie 334, 321 (1965).Google Scholar
  69. 67.
    M. E. Straumanis and R. L. Martin, Corr. Sci. 5, 765 (1965).Google Scholar
  70. 68.
    M. E. Straumanis and D. S. Gnanamuthu, Corr. Sci. 4, 377 (1964).Google Scholar
  71. 69.
    K. G. Sheth, J. W. Johnson, and W. J. James, Corr. Sci. 9, 135 (1969).Google Scholar
  72. 70.
    M. Garreau, Metaux, Corrosion, Industrie 544, 3 (1970).Google Scholar
  73. 71.
    M. Garreau, Compt. Rend. 270, 16 (1970).Google Scholar
  74. 72.
    I. Epelboin, M. Froment, and M. Garreau, Corrosion 18, 1 (1970).Google Scholar
  75. 73.
    H. Aida, I. Epelboin, and M. Garreau, J. Electrochem. Soc. 118, 243 (1971).Google Scholar
  76. 74.
    E. Darmois and I. Epelboin, Compt. Rend. 237, 501 (1953).Google Scholar
  77. 75.
    E. Sacher and K. J. Laidler, Trans. Faraday Soc. 59, 396 (1963).Google Scholar
  78. 76.
    H. Vaidyanathan, M. E. Straumanis, and W. J. James, J. Electrochem. Soc. 121, 7 (1974).Google Scholar
  79. 77.
    C. R. Hoey and M. Cohen, J. Electrochem. Soc. 105, 245 (1958).Google Scholar
  80. 78.
    M. D. Rausch, W. E. McEwen, and J. Kleinberg, J. Am. Chem. Soc. 77, 2093 (1955).Google Scholar
  81. 79.
    J. L. Robinson and P. F. King, J. Electrochem. Soc. 108, 36 (1961).Google Scholar
  82. 80.
    J. H. Greenblatt, Corrosion 18, 125 (1962).Google Scholar
  83. 81.
    J. H. Greenblatt, J. Electrochem. Soc. 103, 539 (1956).Google Scholar
  84. 82.
    J. H. Greenblatt, Can. J. Chem. 36, 1138 (1958).Google Scholar
  85. 83.
    M. E. Straumanis and B. K. Bhatia, J. Electrochem. Soc. 110, 357 (1963).Google Scholar
  86. 84.
    H. H. Uhlig and R. Krutenat, J. Electrochem. Soc. 111, 1303 (1964).Google Scholar
  87. 85.
    W. J. James, M. E. Straumanis, and W. J. Daniels, Corr. Sci. 7, 151 (1967).Google Scholar
  88. 86.
    J. Przyluski and E. Palka, Electrochim. Acta 15, 853 (1970).Google Scholar
  89. 87.
    M. E. Straumanis and Y. Wang, Corrosion 22, 132 (1966).Google Scholar
  90. 88.
    W. J. James, G. E. Stoner, and M. E. Straumanis, Techn. Rept. No. 4 to ONR (1963).Google Scholar
  91. 89.
    D. T. Sorenson, A. W. Davidson, and J. Kleinberg, J. Inorg. Nucl. Chem. 13, 64 (1960).Google Scholar
  92. 90.
    M. E. Straumanis, J. L. Reed, and W. J. James, J. Electrochem. Soc. 114, 885 (1967).Google Scholar
  93. 91.
    J. W. Johnson, Y.C. Sun, and W. J. James, Corr. Sci. 11, 153 (1971).Google Scholar
  94. 92.
    C. Bredig, Z. Phys. Chem. 32, 127 (1900).Google Scholar
  95. 93.
    E. F. Burton, Phil. Mag. 11, 425 (1906).Google Scholar
  96. 94.
    G. R. White, J. Phys. Chem. 15, 723 (1911).Google Scholar
  97. 95.
    J. W. Johnson, E. Deng, S. C. Lai, and W. J. James, J. Electrochem. Soc. 114, 424 (1967).Google Scholar
  98. 96.
    J. D. Corbett and R. K. McMullen, J. Am. Chem. Soc. 78, 2906 (1956).Google Scholar
  99. 97.
    R. K. McMullen and J. D. Corbett, J. Am. Chem. Soc. 80, 4761 (1958).Google Scholar
  100. 98.
    J. D. Corbett, J. Electrochem. Soc. 109, 1214 (1962).Google Scholar
  101. 99.
    R. E. Visco, J. Phys. Chem. 69, 202 (1965).Google Scholar
  102. 100.
    J. O’M. Bockris and E. Enyo, J. Electrochem. Soc. 109, 48 (1962).Google Scholar
  103. 101.
    D. N. Craig, J. I. Hoffman, C. A. Law, and W. J. Hamer, J. Res. NBS 64A, 381, 392 (1960).Google Scholar
  104. 102.
    P. F. Schmidt and M. Blomgren, J. Electrochem. Soc. 106, 694 (1959).Google Scholar
  105. 103.
    E. Wohlwill, Z. Elektrochem. 4, 402, 405, 421 (1898).Google Scholar
  106. 104.
    K. E. Heusler and L. Gaiser, J. Electrochem. Soc. 117, 762 (1970).Google Scholar
  107. 105.
    J. H. Mathewson, Private communication, 1966.Google Scholar
  108. 106.
    M. D. Rausch, W. E. McEwen, and J. Kleinberg, Chem. Rev. 57, 417 (1957).Google Scholar
  109. 107.
    R. Müller, F. Hölzl, W. Knaus, F. Pianissig, and K. Prett, Monat. Chemie 44, 219 (1923).Google Scholar
  110. 108.
    P. E. Wei and A. H. Corvin, J. Org. Chem. 27, 3344 (1962).Google Scholar
  111. 109.
    H. Aida, I. Epelboin, and M. Garreau, J. Electrochem. Soc. 118, 1960 (1971).Google Scholar
  112. 110.
    M. Garreau, Metaux 544, 425 (1970).Google Scholar
  113. 111.
    I. A. Menzies and A. F. Averill, Electrochim. Acta 13, 807 (1968).Google Scholar
  114. 112.
    M. E. Straumanis and M. Dutta, Inorg. Chem. 5, 993 (1966).Google Scholar
  115. 113.
    A. Mazzitelli, M.S., University of Kansas (1949).Google Scholar
  116. 114.
    U. Sborgio and P. Marchetti, Nuovo Cimento 22, 151 (1921).Google Scholar
  117. 115.
    P. A. Jacquet, Metaux et Corrosion 13, 86 (1938).Google Scholar
  118. 116.
    A. W. Davidson and J. Kleinberg, J. Phys. Chem. 57, 571 (1953).Google Scholar
  119. 117.
    C. Capdecome, A. Dargent, and M. Orliac, Metaux et Corrosion 17, 53 (1942).Google Scholar
  120. 118.
    N. Hamsen and E. Knuth-Winterfeldt, Metall. Dtsch. 10, 299 (1956).Google Scholar
  121. 119.
    I. Epelboin and M. Froment, J. Chimie Phys. 4, 1301 (1963).Google Scholar
  122. 120.
    V. V. Gorodetsky, V. V. Lossev, and L. I. Fedostsov, Electrochimie (USSR) 11, 1271 (1969).Google Scholar
  123. 121.
    M. L. Rumpel, M.S. Thesis, Univ. of Kansas (1962)Google Scholar
  124. 121a.
    M. L. Rumpel, M.S. Thesis, Inorg. Chem. 2, 810 (1963)Google Scholar
  125. 121b.
    M. L. Rumpel, A. W. Davidson, and J. Kleinberg, Inorg. Chem. 3, 935 (1964).Google Scholar
  126. 122.
    M. E. Straumanis, G. E. Welch, and W. J. James, J. Electrochem. Soc. 111, 1292 (1964).Google Scholar
  127. 123.
    R. L. Petty, A. W. Davidson, and J. Kleinberg, J. Am. Chem. Soc. 76, 363 (1954).Google Scholar
  128. 124.
    M. D. Rausch, F. D. Popp, W. E. McEwen, and J. Kleinberg, J. Inorg. Chem. 21, 212 (1956).Google Scholar
  129. 125.
    T. C. Franklin and C. R. Parson, J. Electrochem. Soc. 109, 641 (1962).Google Scholar
  130. 126.
    J. W. Johnson, C. K. Wu, and W. J. James, Corr. Sci. 8, 309 (1968).Google Scholar
  131. 127.
    E. Newbery, J. Chem. Soc. 109, 1066 (1916).Google Scholar
  132. 128.
    W. Vaubel, Ber. 57B, 515 (1924).Google Scholar
  133. 129.
    F. H. Jeffery, Chem. Abstr. 18, 2998 (1924).Google Scholar
  134. 130.
    E. Vallesi, Ann. Chim. Appl. 27, 157 (1937).Google Scholar
  135. 131.
    M. E. Straumanis and P. C. Chen, J. Electrochem. Soc. 98, 351 (1951).Google Scholar
  136. 132.
    I. M. Novosel’skii, Kasanah Khim. Inst. 29, 78 (1960).Google Scholar
  137. 133.
    W. O. Kroenig and V. N. Uspenskaja, Korrosion u. Metallschutz 11, 10 (1935)Google Scholar
  138. 133a.
    W. O. Kroenig and V. N. Uspenskaja, Korrosion u. Metallschutz 12, 123 (1936).Google Scholar
  139. 134.
    M. A. Streicher, J. Electrochem. Soc. 93, 304 (1948).Google Scholar
  140. 135.
    M. E. Straumanis, Korrosion u. Metallschutz 14, 71 (1938).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  1. 1.University of Missouri—RollaRollaUSA

Personalised recommendations