Advertisement

The Mechanical Properties and Breakdown of Surface Oxide Films at Elevated Temperatures

Chapter

Abstract

When metallic components operate at high temperatures in aggressive environments their useful life is governed by the presence of a protective surface film which acts as a barrier to reactants. Considerable effort has been directed toward understanding the mechanisms by which ions diffuse through these surface films, but the mechanical maintenance of the film is often a greater prerequisite for many engineering applications.

Keywords

Surface Oxide Creep Rate Oxide Scale Stress Relief Growth Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Stringer, Corr, Sci. 10, 513 (1970).Google Scholar
  2. 2.
    N. B. Pilling and R. E. Bedworth, J. Inst. Metals 29, 529 (1923).Google Scholar
  3. 3.
    D. A. Vermilyea, Acta Met. 5, 492 (1957).Google Scholar
  4. 4.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (2nd Ed.), Butter-worths, London (1965).Google Scholar
  5. 5.
    R. F. Tylecote, J. Iron Steel Inst. 196, 380 (1960).Google Scholar
  6. 6.
    Handbook of Physics and Chemistry, Chemical Rubber Publishing Co., Cleveland (1959).Google Scholar
  7. 7.
    R. F. Tylecote and W. K. Appleby, Werkstoffe u. Korrosion 10, 855 (1972).Google Scholar
  8. 8.
    D. Bruce and P. Hancock, J. Inst. Metals 97, 140 (1969).Google Scholar
  9. 9.
    D. Bruce and P. Hancock, J. Inst. Metals 97, 148 (1969).Google Scholar
  10. 10.
    W. K. Appleby and R. F. Tylecote, Corr. Sci. 10, 325 (1970).Google Scholar
  11. 11.
    W. Jaenicke, S. Leistikow, and A. Stadler, J. Electrochem. Soc. 111, (9), 1031 (1964).Google Scholar
  12. 12.
    J. V. Cathcart, J. E. Epperson, and G. F. Peterson, Acta Met. 10, 699 (1962).Google Scholar
  13. 13.
    B. S. Borie, C. J. Sparks, and J. V. Cathcart, Acta Met. 10, 691 (1962).Google Scholar
  14. 14.
    J. V. Cathcart and G. F. Peterson, J. Electrochem. Soc. 115(6), 595 (1968).Google Scholar
  15. 15.
    R. E. Pawel and J. J. Campbell, Acta Met. 14, 1827 (1966).Google Scholar
  16. 16.
    R. E. Pawel, J. V. Cathcart, and J. J. Campbell, J. Electrochem. Soc. 110(6), 551 (1963).Google Scholar
  17. 17.
    O. Richmond, W. C. Leslie, and H. A. Wriedt, Trans. Am. Soc. Metals 57, 294 (1964).Google Scholar
  18. 18.
    R. E. Pawel and J. J. Campbell, J. Electrochem. Soc. 116(6), 828 (1969).Google Scholar
  19. 19.
    J. A. Sartell, R. J. Stokes, S. H. Bendel, T. L. Johnson, and C. H. Li, Trans. Am. Inst. Min. Met. Eng. 215, 420 (1959).Google Scholar
  20. 20.
    F. C. Frank, Phil. Mag. 44, 854 (1953).Google Scholar
  21. 21.
    L. Czerski and F. Franik, Arch. Hutnw. 3, 43 (1955).Google Scholar
  22. 22.
    F. N. Rhines and J. S. Wolf, Metall. Trans. 1, 1701 (1970).Google Scholar
  23. 23.
    V. R. Howes, Corrosion Sci. 10, 99 (1970).Google Scholar
  24. 24.
    J. K. Tien and F. S. Pettit, Metall. Trans. 3(6), 1587 (1972).Google Scholar
  25. 25.
    J. K. Tien and W. H. Rand, Scripta Met. 6, 54 (1972).Google Scholar
  26. 26.
    J. E. Harris and B. C. Masters, Proc. Roy. Soc. A 292, 240 (1966).Google Scholar
  27. 27.
    P. S. Dobson and R. E. Smallman, Proc. Roy. Soc. A 293, 423 (1966).Google Scholar
  28. 28.
    S. Kritzinger, P. S. Dobson, and R. E. Smallman, Phil. Mag. 16(140), 217 (1967).Google Scholar
  29. 29.
    B. W. Dunnington, F. H. Beck, and M. G. Fontana, Corrosion 8, 2t (1952).Google Scholar
  30. 30.
    R. F. Tylecote and T. E. Mitchell, J. Iron Steel Inst. 196, 445 (1960).Google Scholar
  31. 31.
    P. Hancock and R. Fletcher, Metallurgie 6, 1 (1966).Google Scholar
  32. 32.
    M. Cagnet and J. Moreau, Compt. Rend. 244, 2924 (1957).Google Scholar
  33. 33.
    J. Romanski, Corr. Sci. 8, 67 (1968).Google Scholar
  34. 34.
    D. W. Juenker, R. A. Meussner, and C. E. Birchenall, Corrosion 14, 57 (1958).Google Scholar
  35. 35.
    H. H. Uhlig, Forum on Corrosion Research, U.S. Office of Naval Research, Washington D. C. (November 9, 1949).Google Scholar
  36. 36.
    D. Bruce and P. Hancock, J. Iron Steel Inst. 36, 1021 (1970).Google Scholar
  37. 37.
    D. Mortimer and W. B. A. Sharp, Central Electricity Research Labs., Report DL/L/R 1453 (1967).Google Scholar
  38. 38.
    J. D. Noden, C. J. Knights, and M. W. Thomas, Brit. Corr. J. 3, 47 (1968).Google Scholar
  39. 39.
    D. R. Holmes and R. T. Pascoe, Werkstoffe u. Korrosion 23, 859 (1972).Google Scholar
  40. 40.
    D. L. Douglass, Oxidation of Metals 1(1), 127 (1969).Google Scholar
  41. 41.
    D. Bruce, Ph.D. Thesis, University of Glasgow, 1967.Google Scholar
  42. 42.
    J. Stringer, J. Less Common Metals 16, 55 (1968).Google Scholar
  43. 43.
    J. S. Sheasby, The Oxidation of Nb in the Temperature Range 350–600°C, in AGARD Conference, Reactions between Gases and Solids, Proc. No. 52, October 1969.Google Scholar
  44. 44.
    M. Davies, R. C. Hurst, and P. Hancock, unpublished work.Google Scholar
  45. 45.
    R. F. Tylecote, J. Iron Steel Inst. 196, 136 (1960).Google Scholar
  46. 46.
    G. D. Oxx, Prod. Eng. 1968, 61.Google Scholar
  47. 47.
    D. L. Douglass, J. Less Common Metals 5, 151 (1963).Google Scholar
  48. 48.
    J. Com-Nougué, F. Morin, G. Béranger, and P. Lacombe, Werkstoff u. Korrosion 9, 779 (1972).Google Scholar
  49. 49.
    C. S. Tedmon, J. Electrochem. Soc. 114, 788 (1967).Google Scholar
  50. 50.
    V. R. Howes, Corr. Sci. 8, 729 (1968).Google Scholar
  51. 51.
    R. Z. Von Mises, Angew. Math. Mech. 8, 161 (1928).Google Scholar
  52. 52.
    C. W. Groves, Proc. Brit. Ceram. Soc. 15, 103 (1970).Google Scholar
  53. 53.
    J. B. Wachtman, Ceram. Bull. 46(8), 757 (1967).Google Scholar
  54. 54.
    A. H. Clauer, M. S. Seltzer, and B. A. Wilcox, Mats. Sci. Res. 5, 361 (1971/72).Google Scholar
  55. 55.
    N. F. Astbury, Brit. Ceram. Res. Asso. Paper No. 504 (1961).Google Scholar
  56. 56.
    R. F. Tylecote, J. Inst. Metal 78, 301 (1950).Google Scholar
  57. 57.
    G. Vagnard and J. Washburn, J. Am. Ceram. Soc. 51, 88 (1968).Google Scholar
  58. 58.
    I. A. Menzies and P. Aldred, J. Electrochem. Soc. 116(10), 1414 (1969).Google Scholar
  59. 59.
    G. Vagnard, Thesis, Faculté des Sciences de L’Université de Paris, (1965).Google Scholar
  60. 60.
    J. D. Mackenzie and C. E. Birchenall, Corrosion 13, 783 (1957).Google Scholar
  61. 61.
    J. M. Hulley and R. Rolls, J. Iron Steel Inst. 208, 1029 (1970).Google Scholar
  62. 62.
    P. Charpentier, P. Rabber, and J. Manenc, Mat. Res. Bull. 3, 69 (1968).Google Scholar
  63. 63.
    I. A. Menzies and K. N. Strafford, J. Mat. Sci. 2, 358 (1967).Google Scholar
  64. 64.
    B. Ilschner, B. Reppich, and E. Riecke, Disc. Faraday Soc. 38, 243 (1964).Google Scholar
  65. 65.
    K. N. Strafford and H. Gartside, Nature 220, 158 (1968).Google Scholar
  66. 66.
    B. Fisher and D. S. Tannhauser, J. Electrochem. Soc. 111, 1194 (1964).Google Scholar
  67. 67.
    A. H. Clauer, M. S. Seltzer, and B. A. Wilcox, J. Mat. Sci. 6, 1379 (1971).Google Scholar
  68. 68.
    B. E. Hollox and R. E. Smallman, Brit. Ceram. Soc. Proc. 6, 317 (1965).Google Scholar
  69. 69.
    W. M. Hirthe and J. O. Brittain, J. Am. Ceram. Soc. 46, 411 (1963).Google Scholar
  70. 70.
    M. S. Seltzer, A. H. Clauer, and B. A. Wilcox, J. Nucl. Mat. (1972).Google Scholar
  71. 71.
    M. S. Seltzer, A. H. Clauer, and B. A. Wilcox, J. Nucl. Mat. (1972).Google Scholar
  72. 72.
    R. B. Day and R. J. Stokes, J. Am. Ceram. Soc. 50(9), 445 (1967).Google Scholar
  73. 73.
    T. S. Liu, R. J. Stokes, and C. H. Li, J. Am. Ceram. Soc. 47(6), 276 (1964).Google Scholar
  74. 74.
    F. P. Knudsen, J. Am. Ceram. Soc. 42(8), 376 (1959).Google Scholar
  75. 75.
    E. M. Passmore, R. M. Spriggs, and T. Vasilos, J. Am. Ceram. Soc. 48(1), 1 (1965).Google Scholar
  76. 76.
    R. M. Spriggs and T. Vasilos, J. Am. Ceram. Soc. 47(1) 47 (1963).Google Scholar
  77. 77.
    D. H. Bradhurst and J. S. L1. Leach, Trans. Brit. Ceram. Soc. 62, 793 (1963).Google Scholar
  78. 78.
    J. S. Ll. Leach and P. Neufeld, Proc. Brit. Ceram. Soc. 6, 49 (1966).Google Scholar
  79. 79.
    J. S. Ll. Leach and P. Neufeld, Corr. Sci. 9, 225 (1969).Google Scholar
  80. 80.
    S. F. Bubar and D. A. Vermilyea, J. Electrochem. Soc. 113, 892 (1966).Google Scholar
  81. 81.
    J. C. Grosskreutz, J. Electrochem. Soc, Solid State Sci. 116(9), 1232 (1969).Google Scholar
  82. 82.
    J. S. Thornton and A. D. Thomas, Metall. Trans. 3, 927 (1972).Google Scholar
  83. 83.
    B. S. Hockenhull, H. Sala, and H. A. Monks, Corrosion fatigue, NACE 2, Houston (1972).Google Scholar
  84. 84.
    P. L. Harrison, Corr. Sci. 7, 789 (1967).Google Scholar
  85. 85.
    E. M. Field, R. C. Stanley, A. M. Adams, D. R. Holmes, in Second Int. Cong. on Metallic Corrosion, Houston, Texas, (1966), p. 829.Google Scholar
  86. 86.
    R. C. Hurst and P. Hancock, Werkstoff u. Korrosion 9, 773 (1972).Google Scholar
  87. 87.
    F. H. Fern and J. E. Antill, Corr. Sci. 10, 649 (1970).Google Scholar
  88. 88.
    B. A. Wilcox and F. H. Beck, WADD TR-60-839 (1961).Google Scholar
  89. 89.
    G. Ward, B. S. Hockenhull, and P. Hancock, Metall. Trans. (1974) (accepted for publication).Google Scholar
  90. 90.
    U. R. Evans, in Inst. Metals Symp. on Internal Stresses in Metals and Alloys (1947), p. 219.Google Scholar
  91. 91.
    G. C. Stoney, Proc. Roy. Soc, London A82, 172 (1909).Google Scholar
  92. 92.
    W. W. Stevens and R. C. Hurst, to be published.Google Scholar
  93. 93.
    V. M. Morton, Cor. Sci. 9, 261 (1969).Google Scholar
  94. 94.
    R. E. Pawel, J. Electrochem. Soc. 116(8), 1144 (1969).Google Scholar
  95. 95.
    D. D. Dankov and P. V. Churaev, Dokl. Akad. Nauk. SSSR 73, 1221 (1950).Google Scholar
  96. 96.
    R. E. Pawel, J. V. Cathcart, and J. J. Campbell, J. Electrochem. Soc. 110(6), 553 (1963).Google Scholar
  97. 97.
    R. E. Pawel and J. J. Campbell, Acta Met. 14, 1827 (1966).Google Scholar
  98. 98.
    R. E. Pawel and J. J. Campbell, J. Electrochem. Soc. 116, 828 (1969).Google Scholar
  99. 99.
    C. Roy and B. Burgess, Oxidation of Metals 2(3), 235 (1970).Google Scholar
  100. 100.
    V. R. Howes and C. N. Richardson, Corr. Sci. 9, 385 (1969).Google Scholar
  101. 101.
    A. Norm, private communication.Google Scholar
  102. 102.
    R. J. Jaccodine and W. A. Schlegel, J. Appl. Phys. 37, 2429 (1966).Google Scholar
  103. 103.
    A. Brenner and S. Senderoff, J. Res. Nat. Bur. Std. 42, 89 (1949).Google Scholar
  104. 104.
    W. Jaenicke and S. Leistikow, Z. Phys. Chem. 15, 175 (1958).Google Scholar
  105. 105.
    H. Engell and F. Wever, Acta Met. 5, 695 (1957).Google Scholar
  106. 106.
    W. J. Moore, J. Chem. Phys. Soc. 21, 1117 (1953).Google Scholar
  107. 107.
    R. B. Jones and G. Willoughby, quoted as private communication, 1966, in Ref. 38.Google Scholar
  108. 108.
    J. B. Wachtman and D. G. Lam, J. Am. Ceram. Soc. 42(5), 254 (1959).Google Scholar
  109. 109.
    N. Soga and O. L. Anderson, J. Am. Ceram. Soc. 49(7), 355 (1966).Google Scholar
  110. 110.
    R. J. Herbot, Ph.D. Thesis, University of Illinois, 1963, quoted in Ref. 63.Google Scholar
  111. 111.
    M. S. Doraiswanie, Proc. Ind. Acad. Sci. 25, 413 (1947A).Google Scholar
  112. 112.
    G. C. Wood and T. Hodgkiess, Werkstoffe u. Korrosion 9, 766 (1972).Google Scholar
  113. 113.
    J. H. Westbrook, quoted in Ref. 112.Google Scholar
  114. 114.
    R. C. Hurst, J. B. Johnson, M. Davies, and P. Hancock, paper presented at Conference Deposition and Corrosion in Gas Turbines, CEGB, London, December 1972.Google Scholar
  115. 115.
    H. Trenkler, Werkstoffe u. Korrosion 10, 870 (1972).Google Scholar
  116. 116.
    V. N. Gulyaev, Zavod. Lab. 24(10), 1375 (1958).Google Scholar
  117. 117.
    F. K. Peters and J. H. Engell, Arch. Eisenhüttenwesen 30, 275 (1959).Google Scholar
  118. 118.
    M. Spangenberg, Werkstoffe u. Korrosion 10, 880 (1972).Google Scholar
  119. 119.
    G. J. Bateman and R. Rolls, Brit. Corr. J. 5, 122, (1970).Google Scholar
  120. 120.
    R. Rolls and F. V. Arnold, quoted in Ref. 125.Google Scholar
  121. 121.
    C. W. Tuck and J. Barlow, Iron and Steel 1972, 31.Google Scholar
  122. 122.
    F. V. Arnold, Ph.D. Thesis, Manchester University, 1973.Google Scholar
  123. 123.
    A. Nicholson, quoted in Ref. 125.Google Scholar
  124. 124.
    P. Hancock, Werkstoffe u. Korrosion 12, 1002 (1970).Google Scholar
  125. 125.
    M. R. Wootton, An Assessment of the Method Available for Measuring Scale-Metal Adhesion and the Mechanical Properties of Oxides, CEGB Report from Berkely Nuclear Labs., RB/D/N2116, November 1971.Google Scholar
  126. 126.
    J. C. Grosskreutz and M. B. McNeil, J. Appl. Phys. 40(1), 355 (1969).Google Scholar
  127. 127.
    C. Edeleanu and T. J. Law, Phil. Mag. 7, 573 (1962).Google Scholar
  128. 128.
    D. L. Douglass, Exfoliation and the Mechanical Behaviour of Scales, Paper to ASM Seminar Oxidation of Metals and Alloys, Cleveland, Ohio, October 1970.Google Scholar
  129. 129.
    M. A. Adams and G. T. Murray, J. Appl. Phys. 33(6), 2126 (1962).Google Scholar
  130. 130.
    J. H. Hensler and G. V. Cullen, J. Am. Ceram. Soc. 50, 584 (1967).Google Scholar
  131. 131.
    F. R. N. Nabarro, Report of a Conference on the Strength of Solids, Phys. Soc, London (1948), p. 75.Google Scholar
  132. 132.
    C. Herring, J. Appl. Phys. 21, 437 (1950).Google Scholar
  133. 133.
    P. L. Farnsworth and R. L. Coble, J. Am. Ceram. Soc. 49(5), 264 (1968).Google Scholar
  134. 134.
    R. L. Coble, J. Appl. Phys. 34, 1679 (1963).Google Scholar
  135. 135.
    A. E. Paladino and R. L. Coble, J. Am. Ceram. Soc. 46(3), 133 (1963).Google Scholar
  136. 136.
    Y. Oishi and W. D. Kingery, J. Chem. Phys. 33, 480 (1960).Google Scholar
  137. 137.
    L. W. Barr, I. M. Hoodless, J. A. Morrison, and R. Rudham, Trans. Faraday Soc. 56, 697 (1960).Google Scholar
  138. 138.
    K. N. Strafford, Werkstoffe u. Korrosion 9, 755 (1972).Google Scholar
  139. 139.
    R. Chang, J. Nucl. Mat. 1, 174 (1959).Google Scholar
  140. 140.
    R. C. Folweiler, J. Appl. Phys. 32, 773 (1961).Google Scholar
  141. 141.
    R. Chang, J. Appl. Phys. 31, 484 (1960).Google Scholar
  142. 142.
    S. I. Warshaw and F. H. Norton, J. Am. Ceram. Soc. 45, 479 (1962).Google Scholar
  143. 143.
    E. M. Passmore and T. Vasilos, J. Am. Ceram. Soc. 49(3), 166 (1966).Google Scholar
  144. 144.
    R. R. Vandervoort and W. L. Barmore, J. Am. Ceram. Soc. 46(4), 180 (1963).Google Scholar
  145. 145.
    R. R. Vandervoort and W. L. Barmore, J. Am. Ceram. Soc. 48, 499 (1965).Google Scholar
  146. 146.
    R. E. Fryxell and B. A. Chandler, J. Am. Ceram. Soc. 47(6), 283 (1964).Google Scholar
  147. 147.
    W. L. Barmore and R. R. Vandervoort, J. Am. Ceram. Soc. 50, 316 (1967).Google Scholar
  148. 148.
    R. L. Cummerow, J. Appl. Phys. 34, 1724 (1963).Google Scholar
  149. 149.
    W. S. Rothwell and A. S. Nieman, J. Appl. Phys. 36, 2309 (1965).Google Scholar
  150. 150.
    T. Vasilos, J. B. Mitchell, and R. M. Spriggs, J. Am. Ceram. Soc. 47(4), 203 (1964).Google Scholar
  151. 151.
    R. Scott, J. Nucl. Mat. 1, 39 (1959).Google Scholar
  152. 152.
    W. Armstrong, J. Nucl. Mat. 7, 133 (1962).Google Scholar
  153. 153.
    W. Armstrong and W. R. Irvine, J. Nucl. Mat. 9, 121 (1963).Google Scholar
  154. 154.
    B. Reppich, Phys. Stat. Sol. 20, 69 (1967).Google Scholar
  155. 155.
    R. L. Coble and Y. H. Guerard, J. Am. Ceram. Soc. 46(7), 353 (1963).Google Scholar
  156. 156.
    J. R. Weertman, J. Appl. Phys. 26, 1213 (1955).Google Scholar
  157. 157.
    I. V. Vinokurov and V. A. Ioffe, Soc. Phys., Solid State 11, 207 (1969).Google Scholar
  158. 158.
    D. N. Polubayarinov, E. Ya. Shapiro, Y. S. Bakunov, and F. A. Akopov, Inorganic Materials 2, 336 (1966).Google Scholar
  159. 159.
    R. E. Carter and F. D. Richardson, J. Metals 6, 1244 (1955).Google Scholar
  160. 160.
    W. K. Chen and R. A. Jackson, J. Phys. Chem. Solids 30, 1309 (1969).Google Scholar
  161. 161.
    L. Himmel, N. F. Mehl, and C. E. Birchenall, J. Metals 5, 827 (1953).Google Scholar
  162. 162.
    D. A. Venkatu and L. E. Poteat, Mat. Sci. Eng. 5, 258 (1969/70).Google Scholar
  163. 163.
    R. Haul and G. Dumbgen, J. Phys. Chem. Solids 26, 1 (1968).Google Scholar
  164. 164.
    N. E. Farb, O. W. Johnson, and P. Gibbs, J. Appl. Phys. 36, 1746 (1965).Google Scholar
  165. 165.
    R. J. Hawkins and C. B. Alcock, J. Nucl. Mat. 26, 112 (1968).Google Scholar
  166. 166.
    J. F. Martin and P. Contamin, J. Nucl. Mat. 30, 16 (1969).Google Scholar
  167. 167.
    R. R. Hough and R. Rolls, Metal Sci. J. 5, 206 (1971).Google Scholar
  168. 168.
    P. Hancock, J. Sheffield Univ. Met. Soc. 12, 1 (1973).Google Scholar
  169. 169.
    P. Hancock, Corrosion of Alloys at High Temperatures in Atmospheres Consisting of Fuel Combustion Products and Associated Impurities, HMSO, London (1968).Google Scholar
  170. 170.
    N. Birks and D. L. Hewson, Werkstoffe u. Korrosion 9, 777 (1972).Google Scholar
  171. 171.
    P. Elliott, Corr. Sci. 12, 291 (1972).Google Scholar
  172. 172.
    P. Elliott, private communication.Google Scholar
  173. 173.
    P. S. Gray, in 1st Int. Conf. on Metallic Corrosion, Butterworths, London (1962), p. 213.Google Scholar
  174. 174.
    P. Hancock, R. C. Hurst, and A. R. Sollars, Chemical metallurgy of iron and steel, J. Iron and Steel Inst. London (1973), p. 415.Google Scholar
  175. 175.
    M. Davies, R. C. Hurst, and P. Hancock, Metall. Trans. 4, 2169 (1973).Google Scholar
  176. 176.
    J. B. Johnson, unpublished work in this laboratory.Google Scholar
  177. 177.
    D. Caplan and M. Cohen, Corr. Sci. 6, 321 (1966).Google Scholar
  178. 178.
    C. M. Warzee et al., reported by Hancock in Ref. 169, p. 7.Google Scholar
  179. 179.
    G. C. Wood, Corr. Sci. 2, 173 (1961).Google Scholar
  180. 180.
    H. L. Eiselstein and E. N. Skinner, ASTM, STP 165, 162 (1954).Google Scholar
  181. 181.
    I. G. Wright, Oxidation of Iron, Nickel and Cobalt Base Alloys. MCIC Report, Battelle, June 1972.Google Scholar
  182. 182.
    J. M. Francis and W. H. Whitlow, J. Iron Steel Inst. 203, 468 (1965).Google Scholar
  183. 183.
    G. C. Wood and J. Boustead, J. Corr. Sci. 8, 719 (1968).Google Scholar
  184. 184.
    J. E. Antill, Werkstoffe u. Korrosion 22, 513 (1971).Google Scholar
  185. 185.
    A. U. Seybolt, Corr. Sci. 6, 263 (1966).Google Scholar
  186. 186.
    G. C. Wood, Werkstoffe u. Korrosion 6, 491 (1971).Google Scholar
  187. 187.
    J. M. Francis and J. A. Jutson, Corr. Sci. 8, 445 (1968).Google Scholar
  188. 188.
    W. Betteridge and H. Lewis, Brit. Corr. J. 3, 197 (1968).Google Scholar
  189. 189.
    J. Stringer, J. Met. Rev. 11, 113 (1966).Google Scholar
  190. 190.
    E. J. Felton, J. Electrochem. Soc. 108, 490 (1961).Google Scholar
  191. 191.
    R. F. Tylecote and W. K. Appleby, Werkstoffe u. Korrosion 10, 855 (1972).Google Scholar
  192. 192.
    J. Stringer, B. A. Wilcox, and R. I. Jaffee, Oxidation of Metals 5(1), 11 (1972).Google Scholar
  193. 193.
    J. Stringer and I. G. Wright, Oxidation of Metals 5(1), 59 (1972).Google Scholar
  194. 194.
    C. S. Giggins and F. S. Pettit, Met. Trans. 2, 1071 (1971).Google Scholar
  195. 195.
    T. G. Kravchanko and N. P. Zhuk, Zaskch. Metal. 5(6), 633 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  1. 1.Department of MaterialsCranfield Institute of TechnologyBedfordEngland

Personalised recommendations