On the Possibility that Opiate and Ethanol Actions are Mediated by Similar Mechanisms

  • Eduardo Eidelberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 85B)


Opiates and alcohol modify neuronal electrical activity in many sites of the nervous system. Both act as depressants or stimulants of cell firing depending upon the type of cell studied. Alcohol seems to act upon some nerves by changing their membrane ionic conductance, while opiates seem to affect synaptic events. However, all of the known neural actions of these substances involve calcium-dependent mechanisms. A hypothesis is proposed to account for these facts.


Squid Axon Renshaw Cell Spinal Interneurones Barrow Neurological Institute Ethanol Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abood, L. G. and Hoss, W. Stereospecific morphine absorption to phosphatidyl serine and other membranous components of brain. Eur. J. Pharm. 32: 66–75, 1975.CrossRefGoogle Scholar
  2. Blaustein, M. P. and Goldman, D. E. Competitive action of calcium and procaine on lobster axon. J. Gen. Physiol. 49: 1043–1063, 1966a.CrossRefGoogle Scholar
  3. Blaustein, M. P. and Goldman, D. E. Action of anionic and cationic nerve-blocking agents: experiment and interpretation. Science 153: 429–432, 1966b.CrossRefGoogle Scholar
  4. Brandt, M., Gullis, R. J., Fischer, K. et al. Enkephalin regulates the levels of cyclic nucleotides in neuroblastoma X glioma hypoid cells. Nature 262: 311–312, 1976.CrossRefGoogle Scholar
  5. Clouet, D. H., Gold, G. J., Iwatsubo, K. Effects of narcotic analgesic drugs on the cyclic adenosine 3′,5′-monophosphate-adenylate cyclase system in rat brain. Br. J. Pharmac. 54: 541–548, 1975.CrossRefGoogle Scholar
  6. Davies, J. and Duggan, A. W. Opiate agonist-antagonist effects on Renshaw cells and spinal inter-neurones. Nature 250: 70–71, 1974.CrossRefGoogle Scholar
  7. Davis, V. E. and Walsh, M. J. Alcohol, amines and alkaloids: a possible biochemical basis for alcohol addiction. Science 167: 1005–1006, 1970.CrossRefGoogle Scholar
  8. Eidelberg, E. Acute effects of ethanol and opiates on the nervous system. In R. J. Gibbins, Y. Israel and H. Kalant et al., (Eds.) Recent Advances in Alcohol and Drug Problems, pp. 147–176, New York, Wiley, 1975, Vol. 2.Google Scholar
  9. Eidelberg, E. Possible action of opiates upon synapses. Prog. Neurobiol. 6: 81–102, 1976.CrossRefGoogle Scholar
  10. Eidelberg, E. and Bond, M. L. Effects of morphine and antagonists on hypothalamic cell activity. Arch int Pharmacodyn. Therap. 196: 16–24, 1972.Google Scholar
  11. Eidelberg, E., Bond, M. L., Kelter, A. Effects of alcohol on cerebellar and vestibular neurones. Arch int. Pharmacodyn. Therap. 192: 213–219, 1971.Google Scholar
  12. Eidelberg, E. and Wooley, D. Effects of ethyl alcohol upon spinal cord neurones. Arch int. Pharmacodyn. Therap. 185: 388–396, 1970.Google Scholar
  13. Felpel, L. P., Sinclair, J. G., Yim, G. K. W. Effects of morphine on Renshaw cell activity. Neuropharmacology 9: 203–210, 1970.CrossRefGoogle Scholar
  14. Frankenhaeuser, B. and Hodgkin, A. L. The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond) 137: 218–244, 1957.Google Scholar
  15. Gullis, R., Traber, J. and Hamprecht, B. Morphine elevates levels of cyclic GMP in a neuroblastoma X glioma hybrid cell line. Nature 256: 57–59, 1976.CrossRefGoogle Scholar
  16. Harris, R. A., Loh, H. H., and Way, E. L. Effects of divalent cations, cation chelators, and an ionophore on morphine analgesia and tolerance. J. Pharm. Exp. Therap. 195: 488–498, 1975.Google Scholar
  17. Harris, R. A., Loh, H. H. and Way, E. L. Anti nociceptive effects of lanthanum and cerium in non-tolerant, tolerant, and morphine-to1erant dependent animals. J. Pharm. Exp. Therap. 196: 288–297, 1976.Google Scholar
  18. Hitzeman, R. J., Hitzeman, B. A. and Loh, H. H. Binding of 3H naloxone in mouse: Effect of ions and tolerance development. Life Sci. Pt. I, 14: 2393–2404, 1974.CrossRefGoogle Scholar
  19. Hughes, J. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 88: 295–308, 1975.CrossRefGoogle Scholar
  20. Israel, J., Carmichael, F. J. and MacDonald, J. A. Effects of ethanol on electrolyte metabolism and neurotransmitter release in the CNS. Adv. Exp. Biol. Med. 59: 55–64, 1965.Google Scholar
  21. Kakanaga, T., Kaneto, H., and Koida, M. Pharmacologic studies in analgesics. VII Significance of the calcium ion in morphine analgesia. J. Pharm. Exp. Therap. 153: 134–141, 1966.Google Scholar
  22. Kalant, H. and Israel, Y. Effects of ethanol on active transport of cations. In Biochemical Factors in Alcoholism (Ed.) Maikel, Oxford, 1967.Google Scholar
  23. Kaneto, H. Inorganic ions: the role of calcium. In D. Clouet (Ed.) Narcotic Drugs: Biochemistry Pharmacology, pp. 300–309, Plenum, New York, 1971.CrossRefGoogle Scholar
  24. Kolmodin, G. M. The action of ethyl alcohol on the monosynaptic extensor reflex and the multi-synaptic reflex. Acta Physiol. Scand. 29: Suppl 106: 530–537, 1953.Google Scholar
  25. LeBars, D., Menetrey, D., Conseiller, C., and Besson, J. M. Depressive effects of morphine upon lamina V cells activities in the dorsal horn of the spinal cat. Brain Res. 98: 261–277, 1975.CrossRefGoogle Scholar
  26. Meyer-Lohmann, J., Hagenah, R., Hellweg, C. and Benecke, R. The action of ethyl alcohol on the activity of individual Renshaw cells. Arch. Pharmacol. 272: 131–142, 1972.CrossRefGoogle Scholar
  27. Minneman, K. P. and Iversen, L. L. Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neo-striatum. Nature 262: 313–314, 1976.CrossRefGoogle Scholar
  28. Pert, C. B. and Snyder, S. H. Opiate receptor: demonstration in nervous tissue. Science 179: 1011–1014, 1973.CrossRefGoogle Scholar
  29. Redos, J. D., Catravas, G. N. and Hunt, W. A. Ethanol induced depletion of cerebellar guanosine 3′,5′-cyclic monophosphate. Science 193: 58–59, 1976.CrossRefGoogle Scholar
  30. Ross, D. H., Medina, M. A., Cardenas, H. L. Morphine and ethanol: selective depletion of regional brain calcium. Science 186: 63–65, 1975.CrossRefGoogle Scholar
  31. Seeman, P. The membrane actions of anesthetics and tranquillizers. Pharmacol. Rev. 24: 583–655, 1973.Google Scholar
  32. Seeman, P., Chen, S. S., Chau-Wong, M. and Staiman, A. Calcium reversal of nerve blockade by alcohols, anesthetics, tranquillizers and barbiturates. Can. J. Physiol. Pharm. 52: 526–534, 1974.CrossRefGoogle Scholar
  33. Shanes, A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. Part II. The action potential and excitation. Pharmacol. Rev. 10: 165–272, 1958.Google Scholar
  34. Tewari, S. and Noble, E. P. Alteration in cerebral polynucleotide metabolism following chronic ethanol ingestion. Adv. Exp. Biol. Med. 59: 37–53, 1975.Google Scholar
  35. Towe, A. L. and Harding, G. W. Extracellular microelectrode sampling bias. Exp. Neurol. 29: 366–381, 1970.CrossRefGoogle Scholar
  36. von Hungen, K. and Roberts, S. Neurotransmitter-sensitive Adenylate Cyclase Systems in the Brain. In S. Ehrenpreis and I. J. Kopin (Eds.) Reviews of Neuroscience Vol. I., pp. 231–281, New York, Raven Press, 1974.Google Scholar
  37. Wayner, M. J. Gawronski, D. Raubie, C. and Greenberg, I. Effects of ethyl alcohol on lateral hypothalamic neurons. In N. K. Mello and J. H. Mendelson (Eds.) Recent Advances in Studies of Alcoholism, pp. 219–273, NIMH, Rockville, Md. 1971.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Eduardo Eidelberg
    • 1
  1. 1.Division of Neurobiology, Barrow Neurological InstituteSt. Joseph’s Hospital & Medical CenterPhoenixUSA

Personalised recommendations