Effects of Alcohol on Ganglion Cell Receptive Field Properties and Sensitivity in the Frog Retina

  • Ann-Christine Bäckström
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 85B)


Previous results have shown that alcohol has an effect on vision and on the excitability of retinal neurons. Action potentials of single ganglion cells were recorded by microelectrodes in opened and excised eyes from frogs j (Rana temporaria L.). Histologically two types of j synapses have been described in the retina: conventional j synapses and synapses with a ribbon or bar shaped component surrounded by a rather uniform layer of] synaptic vesicles. The “ribbon synapses” are presynaptic contacts in receptor and bipolar cells while horizontal and amacrine cells have conventional synapses. Tests with ethanol doses up to 0.2% indicated stronger effects on the conventional synapses than on the ribbon synapses. Alcohol decreased or abolished the lateral inhibition (inhibitory surround) mediated by the amacrine cells and depressed the signals from the green rods, which apparently are mediated by horizontal cells. Further alcohol decreased the sensitivity of the signals from the completely dark-adapted red rods in the retina, and increased the sensitivity of the cone-mediated responses for class 3 and deviating class 4 cells,when measured against a background light. Alcohol also increased the latency of the response up to 55 msec. depending on the size of the stimulus field.


Ganglion Cell Lateral Inhibition Bipolar Cell Amacrine Cell Horizontal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, A. III, and Pollen, D. A. Neurotransmission in central nervous tissue: A study of isolated rabbit retina. J. Neurophysiol., 32, 424–442, 1969.Google Scholar
  2. Bäckström, A-C., and Reuter, T. Opponent colour interaction between two kinds of rod signals in the frog’s retina. Physica norv. 7, 4, 187–189, 1974.Google Scholar
  3. Bäckström, A-C, and Reuter, T. Receptive field organization of ganglion cells in the frog retina: contributions from cones, green rods and red rods. J. Physiol. 246, 79–107, 1975.Google Scholar
  4. Barlow, H. B. Action potentials from the frog’s retina. J. Physiol. 119, 58–68, 1953 a.Google Scholar
  5. Barlow, H. B. Summation and inhibition in the frog’s retina. J. Physiol. 119, 69–88, 1953 b.Google Scholar
  6. Baylor, D. A., Fuortes, M. G. F., and O’Bryan, P. M. Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294, 1971.Google Scholar
  7. Bernhard, C. G., Knave, B., and Persson, H. E. Differential effects of ethyl alcohol on retinal functions. Acta physiol. scand. 88, 373–381, 1973.CrossRefGoogle Scholar
  8. Bernhard, C. G., and Skoglund, C. R. Selective suppression with ethyl alcohol of inhibition in the optic nerve and of the negative component P III of the electroretinogram. Acta physiol. scand. 2, 10–21, 1941.CrossRefGoogle Scholar
  9. Blume, W. Vergleichende Untersuchungen über die erregbarkeitssteigende und lähmende Wirkung einiger Narkotika am peripheren Nervenstamm, am Skelettmuskel und am motorischen Nervenende des Frosches. Arch. Exptl. Pathol. Pharmakol. 110, 46–65, 1925.CrossRefGoogle Scholar
  10. Cinotti, A., Stephens, G. and Kiebel, G. The electroretinographic response and adaptation in chronic alcoholics. In A. Wirth (Eds.) Symposium on electroretinography, pp. 269–276, Pisa, Pacini, 1970.Google Scholar
  11. Denton, E. J., and Wyllie, J. H. Study of the photosensitive pigments in the pink and green rods of the frog. J. Physiol. 127, 81–89, 1955.Google Scholar
  12. Donner, K. O., and Reuter, T. The spectral sensitivity and photopigment of the green rods in the frog’s retina. Vision Res. 2, 357–372, 1962.CrossRefGoogle Scholar
  13. Donner, K. O., and Reuter, T. The dark-adaptation of single units in the frog’s retina and its relation to the regeneration of rhodopsin. Vision Res. 5, 615–632, 1965.CrossRefGoogle Scholar
  14. Donner, K. O., and Reuter, T. Dark-adaptation processes in the rhodopsin rods of the frog’s retina. Vision Res. 7, 17–41, 1967.CrossRefGoogle Scholar
  15. Donner, K. O., and Reuter, T. Visual adaptation of the rhodopsin rods in the frog’s retina. J. Physiol. 199, 59–87, 1968.Google Scholar
  16. Dowling, J. E. Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proc. R. Soc. B. 179, 205–228, 1968.CrossRefGoogle Scholar
  17. Dowling, J. E., and Boycott, B. B. Neural connections of the retina: Fine structure of the inner plexiform layer. Cold. Spr. Harb. Symp. quant. Biol. 30, 395–402, 1965 a.CrossRefGoogle Scholar
  18. Dowling, J. E., and Boycott, B. B. Neural connections of the primate retina. In J. Rohen (Eds.) The Structure of the Eye. II, pp 55–68. Symposium, Wiesbaden, 1965 b.Google Scholar
  19. Dowling, J. E., and Boycott, B. B. Organization of the primate retina: electron microscopy. Proc. R. Soc. B., 116, 80–111, 1966.CrossRefGoogle Scholar
  20. Dowling, J. E., and Boycott, B. B. Retinal ganglion cells: A correlation of anatomical and physiological approaches. In B. R. Straatsma, M. O. Hall, R. A. Allen and F. Crescitelli (Eds.) The Retina: Morphology, Function and Clinical Characteristics. UCLA Forum in Medical Sciences No 8, pp. 31–62. Berkley-Los Angeles, University of Calif. Press, 1969.Google Scholar
  21. Ehinger, B., and Falck, B. Autoradiography of some suspected neurotransmitter substances: GABA, Glycine, Glutamic acid, Histamine, Dopamine and L-dopa. Brain Research, 33, 157–172, 1971.CrossRefGoogle Scholar
  22. Forbes, A., Burleigh, S., and Neyland, M. Electric responses to color shift in frog and turtle retina. J. Neurophysiol. 18, 517–535, 1955.Google Scholar
  23. Gallego, A. Connexiones transversales retinianas. An. Inst. Farmacol. esp. 3, 31–39. In M.G.F. Fuortes (Eds.) Handbook Sens. Physiol. VII/2, 1972, Berlin, Springer Verlag. 1954.Google Scholar
  24. Goodchill, M., and Neal, M. J. Uptake of 3H-gamma-amino-butyric acid (GABA) by rat retina. J. Physiol. 210, 182P–183P, 1970.Google Scholar
  25. Graham, L. T. Jr., Baxter, C. F., and Lolley, R. N. In vivo influence of light or darkness on the GABA system in the retina of the frog (Rana pipiens). Brain Research 20, 379–388, 1970.CrossRefGoogle Scholar
  26. Graham, L. T. Jr., Lolley, R. N., and Baxter, C. F. Effect of illumination upon levels of gamma-aminobutyric acid and glutamic acid in frog retina in vivo. Federation Proc. 27, 453, 1968.Google Scholar
  27. Granger, G. W., and Ikeda, H. Drugs and visual thresholds. In A. Herxheimer (Eds.) Drugs and Sensory Functions, J. & A. Churchill Ltd., London, 1968.Google Scholar
  28. Granit, R. Colour receptors of the frog’s retina. Acta physiol. scand. 3, 137–151, 1942.CrossRefGoogle Scholar
  29. Granit, R. Sensory mechanisms of the retina. London, Oxford Univ. Press, 1947.Google Scholar
  30. Hartline, H. K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol. 121, 400–415, 1938.Google Scholar
  31. von Humboldt 1797. (ace. to Knutsson, E. Effects of ethanol on the membrane potential and membrane resistance of frog muscle fibres. Acta physiol. scand. 52, 242–253, 1961.)Google Scholar
  32. Ikeda, H., and Granger, G. W. Action of alcohol on visual and retinal responses to intermittent illumination. In Alcohol and road traffic. Proc. 3rd Int. Conference. Brit. Med. Assoc. Lond. pp. 140–146, 1963.Google Scholar
  33. Jacobson, J. H., Hirose, T., and Stokes, P. E. Changes in human ERG induced by intravenous alcohol. Ophthal. Add. ad. 158, 669–677, 1969.Google Scholar
  34. Kuriyama, K., Sisken, B., Haber, B., and Roberts, E. The gamma-amino-butyric acid system in rabbit retina. Brain Research, 9, 165–168, 1968.CrossRefGoogle Scholar
  35. Lam, D. M. K. Biosynthesis of gamma-aminobutyric acid by isolated axons of cone horizontal cells in the goldfish retina. Nature, 245, 345–347, 1975.CrossRefGoogle Scholar
  36. Lam, D. M. K., and Steinman, L. The uptake of (gamma- H) aminobutyric acidx in the goldfish retina. Proc. Wat. Acad. Sci. USA, 68, 11, 277–278, 1971.Google Scholar
  37. Lange, J., and Specht, W. Neue Untersuchungen liber die Beeinflussung der Sinnesfunktionen durch geringe Alkoholmenge. Z. Pathopsych. 3, 155–265, 1915. (ace. to Jellinek and McFarland, 1940).Google Scholar
  38. Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., and Pitts, W. H. Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, 129–175, 1960.CrossRefGoogle Scholar
  39. Murakami, M., and Sasaki, Y. Localization of the ERG components in the carp retina. Jap. J. Physiol. 18, 337–349, 1968.CrossRefGoogle Scholar
  40. Negishi, K., and Svaetichin, G. Effects of alcohols and volutile anestnetics on S-potential producing cells and on neurons. Arch. Ges. Physiol. 292, 218–228, 1966.CrossRefGoogle Scholar
  41. Nichols, S. W., and Koelle, G. B. Comparision of the localization of acetylcholinesterase and non-specific Cholinesterase activity in mammalian and avian retinas. J. Comp. Neurol. 133, 1–6, 1968.CrossRefGoogle Scholar
  42. O’Bryan, P. M. Properties of depolarizing synaptic potential evoked by peripheral illumination in cones of the turtle retina. J. Physiol. 235, 207–223, 1973.Google Scholar
  43. Olney, J. W. Centripetal sequence of appearance of receptor-bipolar synaptic structures in developing mouse retina. Nature, Lond. 218, 281–282, 1968 a.CrossRefGoogle Scholar
  44. Olney, J. W. An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Invest. Ophthal. 7, 250–268, 1968 b.Google Scholar
  45. Peskin, J. C. The regeneration of visual purple in the living animal. J. gen. Physiol. 26, 27–47, 1942.CrossRefGoogle Scholar
  46. Popov, N. A., and Popov, C. Contribution a l’ètude des fonctions corticales chez l’homme par la méthode des réflexes conditionnés électro-corticaux. II. De la modification par l’alcool des couleurs des images consécutives et des images consécutives conditionnées. (Contribution to the study of cortical function in man by the method of electrocortical reflexes. II. The modification by alcohol of the colors of after-images.) CR. Acad. Sci. Paris. 237, 1439–1441, 1953.Google Scholar
  47. Raskin, N. H., Sugar, K. P., and Steinberg, R. H. Dark-adaptation slowed by inhibitors of alcohol-dehydrogenase in the albino rat. Brain Research, 50, 496–500, 1973.CrossRefGoogle Scholar
  48. Reuter, T. Visual pigments and ganglion cell activity in the retinae of tadpoles and adult frogs (Rana temporaria L.). Acta zool. fennica 122, 1–64, 1969.Google Scholar
  49. Schmidt, I., and Bingel, A. G. A. Effect of oxygen deficiency and various other factors on color saturation thresholds. U.S.A.F. School of Aviation Med. Project Reports: Project No. 21–31–002, 1953.Google Scholar
  50. Sjöstrand, F. S. The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron microscopy. J. Cell. Comp. Physiol. 42, 45–70, 1953.CrossRefGoogle Scholar
  51. Sjöstrand, F. S. Z. wiss. Mikroskop. 62, 65–86, 1954. (acc to G. K. Smelser (Eds.) The Structure of the Eve, New York, Academic Press, 1961.Google Scholar
  52. Virsu, V., Kyykkä, T., and Vahvelainen, M.-L. Effects of alcohol on inhibition in the human visual system. I. Flicker and apparent spatial frequency. Reports from the Inst. Psychol. Univ. Helsinki, 3, 1–32, 1973.Google Scholar
  53. Werblin, F. S. Control of retinal sensitivity II. Lateral interactions at the outer plexiform layer. J. gen. Physiol. 63, 62–87, 1974.CrossRefGoogle Scholar
  54. Werblin, F. S., and Copenhagen, D. R. Control of retinal sensitivity III. Lateral interactions at the inner plexiform layer. J. gen. Physiol. 62, 88–110, 1974.CrossRefGoogle Scholar
  55. Werblin, F. S., and Dowling, J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355, 1969.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Ann-Christine Bäckström
    • 1
  1. 1.Department of Zoology, Division of PhysiologyUniversity of HelsinkiHelsinki 10Finland

Personalised recommendations