Advertisement

Peroxisomal Enzymes and Oxygen Metabolism in Liver

  • Helmut Sies
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 78)

Summary

1) Catalase and three oxidases(urate, L-α-hydroxyacid and D-aminoacid oxidases), enzymes decomposing and producing H2O2, respectively, in the peroxisomes of rat liver, are discussed with emphasis on properties relevant for physiological conditions.

Keywords

Cytochrome Oxidase Hydrogen Donor Oxygen Metabolism Urate Oxidase Peroxisomal Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chance B: An intermediate compound in the catalase-hydrogen peroxide reaction. Acta Chem. Scand. 1:236–267, 1947CrossRefGoogle Scholar
  2. 2.
    Sies H, Chance B: The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 11:172–176, 1970PubMedCrossRefGoogle Scholar
  3. 3.
    deDuve C, Baudhuin P: Peroxisomes(microbodies and related partides. Physiol.Rev. 46:323–357, 1966Google Scholar
  4. 4.
    Sies H: Biochemistry of the Peroxisome in the Liver Cell. Angew. Chem. Int. Ed. 13:706–718, 1974;CrossRefGoogle Scholar
  5. 4a.
    Sies H: Biochemistry of the Peroxisome in the Liver Cell. Angew.Chem. 86:789–801, 1974CrossRefGoogle Scholar
  6. 5.
    Deisseroth A, Dounee AL: Catalase: Physical and Chemical Properties, Mechanism of Catalysis, and Physiological Role. Physiol. Rev. 50:319–375, 1970PubMedGoogle Scholar
  7. 6.
    Chance B, Schonbaum G: Catalase. In Boyer PD(Editor): The Enzymes, 3rd edition. New York and London, Academic Press,1976, vol XIII PPGoogle Scholar
  8. 7.
    Keilin D, Hartree EF: Coupled Oxidation of Alcohol. Proc.Roy. Soc.B 119:141,1936CrossRefGoogle Scholar
  9. 8.
    Chance B, Oshino N: Analysis of the catalase-hydrogen peroxide intermediate in coupled oxidations. Biochem.J. 131: 564–567, 1973PubMedGoogle Scholar
  10. 9.
    Leighton F, Poole B, Beaufay H, Baudhuin P, Coffey JW, Fowler S, deDuve C: The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. J.Cell Biol. 37:482–513, 1968PubMedCrossRefGoogle Scholar
  11. 10.
    Leighton F, Poole B, Lazarow PB, deDuve C: The Synthesis and Turnover of Rat Liver Peroxisomes. I. Fractionation of Peroxisome Proteins. J. Cell Biol. 41:521–535, 1969PubMedCrossRefGoogle Scholar
  12. 11.
    Mahler H: Uricase. In Boyer PD, Lardy HA, Myrbäck K(Editors): The Enzymes, 2nd edition, New York and London, Academic Press, 1963, vol 8, pp 285–296Google Scholar
  13. 12.
    Kun E, Dechary JM, Pitot HC: The Oxidation of Glycolic Acid by a Liver Enzyme. J.Biol.Chem. 210:269–280, 1954PubMedGoogle Scholar
  14. 13.
    McGroarty E, Hsieh B, Wied DM, Gee R, Tolbert NE: Alpha Hydroxy Acid Oxidation by Peroxisomes. Arch.Biochem.Biophys.161:194–210,1974CrossRefGoogle Scholar
  15. 1U.
    Dixon M, Kleppe K:D-Amino Acid Oxidase.II.Specificity, Competitive Inhibition and Reaction Sequence. Biochem.Biophys.Acta 96:368–382, 1965CrossRefGoogle Scholar
  16. 15.
    Oshino N, Jamieson D, Chance B: The Properties of Hydrogen Peroxide Production under Hyperoxic and Hypoxic Conditions of Perfused Rat Liver. Biochem.J. 146:53–65, 1975PubMedGoogle Scholar
  17. 16.
    Meister A, Wellner D: Flavoprotein Amino Acid Oxidases. In Boyer PD, Lardy HA, Myrbäck K(Editors): The Enzymes, 2nd edition, New York and London, Academic Press, 1963, vol 7, PP 609–648Google Scholar
  18. 17.
    Hruban H, Rechcigl M: Microbodies and related particles. Int. Rev. Cytol. Suppl. I:1–296, 1969Google Scholar
  19. 18.
    Sies H, Bücher Th, Oshino N, Chance B: Heme Occupancy of Cata-lase in Hemoglobin-free Perfused Rat Liver and of Isolated Rat Liver Catalase. Arch.Biochem.Biophys. 154:106–116, 1973PubMedCrossRefGoogle Scholar
  20. 19.
    Oshino N, Chance B, Sies H, Bücher Th: The Role of H2O2 Generation in Perfused Rat Liver and the Reaction of Catalase Compound I and Hydrogen Donors. Arch.Biochem.Biophys. 154:117–131, 1973PubMedCrossRefGoogle Scholar
  21. 20.
    Portwich F, Aebi H: Erfassung der Peroxydbildung tierischer Gewebe mittels peroxydatischer Umsetzungen. Helv.Physiol.Pharmakol. Acta 18:1–16, 1960Google Scholar
  22. 21.
    Oshino N, Jamieson D, Sugano T, Chance B: Optical Measurement of the Catalase-Hydrogen Peroxide Intermediate(Compound I) in the Liver of Anaesthetized Rats and its Implication to Hydrogen Peroxide Production in situ. Biochem.J. 146:67–77, 1975PubMedGoogle Scholar
  23. 22.
    Chance B, Schoener B, Schindler F: The intracellular oxidation-reduction state. In: Oxygen in the Animal Organism, Dickens F, Neil E(Editors), Pergamon Press, Oxford, 1964, pp 367–388Google Scholar
  24. 23.
    Sugano T, Oshino N, Chance B: Mitochondrial functions under hypoxic conditions. The steady states of cytochrome c reduction and of energy metabolism. Biochim.Biophys.Acta 347:340–358, 1974PubMedCrossRefGoogle Scholar
  25. 24.
    Sies H: Das Peroxisom Im Hepatocyten. Katalase-Komplex I in der hämoglobinfrei durchströmten Rattenleber. Habilitationsschrift, Universität München, 1971Google Scholar
  26. 25.
    Nicholls P, Chance B: Cytochrome c oxidase. In: Hayaishi O(Editor)Molecular Mechanisms of Oxygen Activation. New York and London, Academic Press, 1974, pp 479–534Google Scholar
  27. 26.
    Sies H, Grosskopf M: Oxidation of cytochrome b5 by hydroperoxides in rat liver. Eur.J.Biochem. 57:513–520, 1975PubMedCrossRefGoogle Scholar
  28. 27.
    Berry MN, Friend DS: High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. J.Cell Biol. 43:506–520, 1969PubMedCrossRefGoogle Scholar
  29. 28.
    Miller JA, Kessler M: Tissue pO2 levels in the liver of warm and cold rats artificially respired with different mixtures of O2 and CO2. In: Bicher HI, Bruley DF(Editors): Oxygen Transport to Tissue. New York, Plenum Publ. Co. 1973, pp 361–370Google Scholar
  30. 29.
    Loud AV: A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J.Cell Biol. 37: 27–46, 1968PubMedCrossRefGoogle Scholar
  31. 30.
    McCord JM, Fridovich I: Superoxide dismut ase. An enzymic function for erythrocuprein(hemocuprein). J.Biol.Chem. 244:6049–6055, 1969PubMedGoogle Scholar
  32. 31.
    Jobsis FF: Oxidative metabolism at low pO2. Fed.Proc. 31:1404–1413, 1972PubMedGoogle Scholar
  33. 32.
    Mills GC: Glutathione peroxidase and the destruction of hydrogen peroxide in animal tissues. Arch.Biochem.Biophys. 86:1–5, 1969CrossRefGoogle Scholar
  34. 33.
    Sies H, Gerstenecker C, Menzel H, Flohé L: Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett. 27:171–175, 1972PubMedCrossRefGoogle Scholar
  35. 34.
    Sies H, Summer KH: Hydroperoxide-met aboli zing systems in rat liver. Eur.J.Biochem. 57:503–512, 1975PubMedCrossRefGoogle Scholar
  36. 35.
    Dikstein S: Stimulability, adenosine triphosphatases and their control by cellular redox processes. Naturwissenschaften 58:439–443, 1971PubMedCrossRefGoogle Scholar
  37. 36.
    Flohé L, Benöhr HC, Sies H, Waller HD, Wendel A(Editors): Glutathione. G. Thieme Verlag, Stuttgart, 1974Google Scholar
  38. 37.
    Kosower EM, Werman R: A new step in transmitter release at the myoneural junction. Nature New Biology 233:121–122, 1971PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Helmut Sies
    • 1
  1. 1.Institut für Physiologische Chemie und PhysikalischeBiochemie der Universität MünchenMunichGermany

Personalised recommendations