Advertisement

Cerebral Hemodynamic and Metabolic Alterations in Hypovolemic Shock

  • A. G. B. Kovach
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 78)

Abstract

Defects in central nervous function following trauma and severe blood loss were clearly recognized in the first classical description of the characteristic symptoms of the condition by Ambroise Paré in 1975. In 1899 Crile suggested on the basis of experimental results that the central nervous system (CNS) played an important role in the development of shock.1 He thought that impulses originating from the injured areas inhibited the medullary vasometer centers, thus reducing blood pressure and, if long lasting, sufficiently resulted in a specific impairment of the circulation. Later, other theories gained dominance and the interest in CNS changes during shock disappeared. Opinions in the literature are controversial as to the role of somatic and visceral nociceptive afferent impulses in the development of irreversible shock2,3,4,5,6. It was generally assumed, that owing to its well developed blood flow autoregulatory mechanisms, the brain’s vital functions are protected during hypotension in hypovolemic and other types of shock.

Keywords

Cerebral Blood Flow Hemorrhagic Shock Mean Arterial Blood Pressure Metabolic Alteration Regional Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crile, G.W.: An experimental research into surgical shock. Philadelphia, Lippincott. p. 160, 1899.Google Scholar
  2. 2.
    Slome, D., O’Shaughnessy, L.: The nervous factor in traumatic shock. Brit. J. Surg. 25:900–909, 1938.CrossRefGoogle Scholar
  3. 3.
    Overman, R. R., Wang, S. C.: The contributory role of the afferent nervous factor in experimental shock: sublethal hemorrhagic and sciatic stimulation. Amer. J. Physiol. 148:289–295, 1947.PubMedGoogle Scholar
  4. 4.
    Arshavskaya, E. J.: On the mechanism of origin of experimental shock in the presence of nocriceptive irritation in different age periods (Neuroscien) Fiziol. Us. Moscow, 36:333–341, 1950.Google Scholar
  5. 5.
    Guthrie, C. C.: Experimental shock. J. Amer. Med. Assoc. pp.1394–1398, 1917.Google Scholar
  6. 6.
    Popov, L. I.: Shok i krovoposjerya. Tr. Voenno-med. Ord. Lenina Akad. S. M. Kirova 102:108–144, 1959.Google Scholar
  7. 7.
    Kovach, A.G.B., Fonyo, A.: Metabolic responses to injury in cerebral tissue. In: The Biochemical Response to Injury,(Ed.) H. B. Stoner, C. I. Threlfall. Oxford: Blackwell.pp. 129–160, 1960.Google Scholar
  8. 8.
    Kovach, A.G.B.: Importance of nervous and metabolic changes in the development of irreversibility in experimental shock. Part 3, Fed. Proc. 20:122–137, 1961.Google Scholar
  9. 9.
    Dora, E., Kovach, A.G.B., Nyary, I.: Hypothalamic and cortical evoked potentials in hemorrhagic shock. In: Neurohumoral and Metabolic Aspects of Injury. (Ed.) A.G.B. Kovach, H.B. Stoner, J. J. Spitzer, New York and London: Plenum Press, pp. 481–487, 1973.Google Scholar
  10. 10.
    Kovach, A.G.B., Fonyo, A., Vittay, T., and Pogatsa, G.: Oxygen and glucose consumption and hexokinase activity in vitro of brain tissue of rats in traumatic shock. Acta. Physiol. Acad. Sci. Hung. 11:173–180, 1957.Google Scholar
  11. 11.
    Kovach, A.G.B., Fonyo, A., Kovach, E.: Cerebral phosphate metabolism in traumatic shock. Acta Physiol. Acad. Sci. Hung. 16:157–164, 1959.PubMedGoogle Scholar
  12. 12.
    Kovach, A.G.B., Mitsanyi, A., Monos, E., Nyary, I., Sulyok, A.: Control of organ blood flow following hemorrhage. Avd. Exp. Med. Biol. 33:1–17, 1973.Google Scholar
  13. 13.
    Biro, J., Buki, B., Kovach, A.G.B.: Changes of the higher nervous activity following ischemic shock in the rat. Acta Physiol. Acad. Sci. Hung. 10:277–289, 1956.Google Scholar
  14. 14.
    Kovach, A.G.B., Rohein, P.S., Iranyi, M., Cserhati, E., Gosztonyi, G., Kovach, E.: Circulation and metabolism in the head of the dog in ischemic shock. Acta Physiol. Acad. Sci. Hung. 15:217–229, 1959.Google Scholar
  15. 15.
    Williams, L.F., Jr.: Hemorrhagic shock as a source of unconsciousness. Surgical Clin. N. Am. 48:263–272, 1968.Google Scholar
  16. 16.
    Kovach, A.G.B., Sandor, P.: Cerebral blood flow and brain function during hypertension and shock. Ann. Rev. of Physiol. 39:571–596, 1976.CrossRefGoogle Scholar
  17. 17.
    Kovach, A.G.B.: Az idegrendszer schockban. Orvoskepzes 41:321-332, 1966.Google Scholar
  18. 18.
    Kovach, A.G.B.: Circulatory adjustment and its comparative physiological aspects after changing blood volume. In: Int. Cong. IUPS 24. Wash. DC 6:35–36 (Abstr.), 1968.Google Scholar
  19. 19.
    Nyary, I., Dora, E., Sandor, P., Kovach, A.G.B., Reivich, M.: Cerebral blood flow and metabolism in hemorrhagic shock in the baboon. In: Third Tbilisi Symp. on Brain Blood Supply, Budapest; Akademiai Kiado (In press), 1976.Google Scholar
  20. 20.
    Byary, I. Maklari, E., Kovach, A.G.B.: Hypothalamic blood flow in hemorrhagic shock after administration of buffer solutions. Acta Physiol. Acad. Sci. Hung. 1976 (In press).Google Scholar
  21. 21.
    Sandor, P. et al: Modifications locales de la circulation cerebrale dans diverses regions du cerveau pendant l’emorragic. In: Regional Congr. Int. Union Phys. Sci. Brasow, Abstr. p. 586, 1970.Google Scholar
  22. 22.
    Sandor, P., Kardos, G., Thuroczi, L., Berczi, I. Nyary, I., Sulyok, A., Kovach, A.G.B.: Cortical hypothalamic and hypophyseal blood flow during hemorrhagic shock. In: 25th. Int. Congr. Physiol. Sci. Munich, p. 49, 1971 (Abstr.).Google Scholar
  23. 23.
    Cantu, R.C., Ames, A., III: Experimental prevention of cerebral vascular obstruction introduced by ischemia. J. Neurosrug. 30: 50–54, 1969.CrossRefGoogle Scholar
  24. 24.
    Sandor, P., Tomka, N., Kovach, A.G.B.: Regional cerebral blood flow during incompatible blood transfusion. 41st. Ann. Conf. Hung. Physiol. Soc. Szeged. Abstr. Acta Physiol. Acad. Sci. Hung. (In press).Google Scholar
  25. 25.
    Mchedlishvili, G.I., Garfunkel, M.L., Ormotsadze, L.G.: Cerebral circulation under conditions of heterotransfusion shock. Pt. Fiziol. Eksp. Ter. 16:25–31.Google Scholar
  26. 26.
    Kassel, N. F., Reivich, M.: On line analysis of cerebral blood flow clearance curves. In: Brain and Blood Flow. (Ed.) R.W.R. Russel, London: Pitman Medical Publishers, p. 34–38, 1971.Google Scholar
  27. 27.
    Reivich, M., Jehle, J., Sokoloff, L. et al,: Measurement of regional cerebral blood flow with 14C- antipyrine in awake cats. J. Appl. Physiol. 27:296–300, 1969.PubMedGoogle Scholar
  28. 28.
    Nagy, A., Dora, E., Kovach, A.G.B.: Selective vulnerability of the brain in hemorrhagic shock. In: Magyar Elettani Tarsasag Vandorgyulese, 42. Eloadaskivonatok, Budapest, p. 187, 1976.Google Scholar
  29. 29.
    Nothnagel, H.: Die vasomotorischen Nerves der Gehirnegefabe. Beitrag zur Lehre von der Epilepsie. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 1:203–213, 1867.Google Scholar
  30. 30.
    Ghorobski, J., and Penfield, W.: Cerebral vasodilator nerves and their pathway from the medulla oblongata. Arch. Neurol. Psychiat. Chicago Arch. Neurol. Psychiat. 28:1257–1289, 1932.Google Scholar
  31. 31.
    Kovach, A.G.B., Menyhart, J., Kiss, S., Erdelyi, A., Kovach, E.: Untersuchungen uber die Ausbildung des irreversiblen Schockes. Acta Physiol. Acad. Sci. Hung. 5:Suppl. 33–34, 1954.Google Scholar
  32. 32.
    Kovach, A.G.B., Rohein, P.S., Iranyi, M., Kiss, S., Antal, J.: Effect of the isolated perfusion of the head on the development of ischaemic and hemorrhagic shock. Acta Physiol. Acad. Sci. Hung. 14:231–238, 1958.Google Scholar
  33. 33.
    Salford, L.G., Duggy, T.E., Plum, F.: Salford, L.G., Duffy, T.E., Plum, F.: Altered cerebral metabolism and blood flow in response to physiological stimulation. Stroke 4:361, 1973.Google Scholar
  34. 34.
    Matrosov, V.D.: The effect of sustained nociceptive stimulation on the adrenaline and noradrenaline contents in different brain areas and in adrenal glands of rats prior to and after removal of the upper cervical sympathetic ganglia. Sechenew Physiol. J. USSR 61:385, 1975.Google Scholar
  35. 35.
    Sandor, P., Demchenko, I.T., Kovach, A.G.B., Moszkalendo, Y.E.: Hypothalamic and thalamic blood flow and pO2 changes during somatic afferent stimulation on blood pressure and blood gases in stabilized dogs. American J. Physiol. 1976 (In press).Google Scholar
  36. 36.
    Aukland, K. Bower, B.F., Berliner, R.W.: Measurement of Local Blood Flow with Hydrogen Gas. Circulation Research 14:164, 1964.PubMedCrossRefGoogle Scholar
  37. 37.
    Evans, M.H.: The spinal pathways of the myelinated and the non-myelinated afferent nerve fibres that mediate reflex dilatation of the pupils. J. Physiol. 158:560, 1961.PubMedGoogle Scholar
  38. 38.
    Dmecsenko, I.T., Sandor, P., Moszkalenko, J.E., Kovach, A.G.B.: Izmemenija Krovotoka I Naprjazsenija Kiszlorada V Colovnom Mozge Pro Afferentnoj Szomaticseszkoj Sztimuljacii. Fiziol. Zs. I.M. Szecsenova, 61. pp. 1153–1159, 1975.Google Scholar
  39. 39.
    Burgess, D.W.: Correlation Between Oxygen Cycles in Contralateral Regions of the Brain, Stroke 3:374, 1973.Google Scholar
  40. 40.
    Ghance, B., Mauriello, G. and Aubert, M.:ADP arrival at muscle mitochondria following a twitch. In: Muscle as a Tissue, (Ed.), K. Rodahl and S. Horvath. New York: McGraw, pp. 128–145, 1962.Google Scholar
  41. 41.
    Kovach, A.G.B., Dora, E., Eke, A., Gyulai, L.: Microcirculatory effects on microfluorimetry. FASEB Oxygen Colloquium, Anaheim. Submitted to Fed. Proc. Anaheim, 1976.Google Scholar
  42. 42.
    Ikrenyi, K., Dora, E., Hajos, F., Kovach, A.G.B.: Agymitochondriumok Funkcio es morfologiai intergritasanak post mortem vizsgalata. Acta Physiol. Acad. Sci. Hung. 1974 (In press).Google Scholar
  43. 43.
    Ikrenyi, I., Dora, E., Hajos, F., Kovach, A.G.B.: Metabolic and electron microscopic studies post mortem in brain mitochondria. In: Proc. 2nd. Int. Symp. on Oxygen Transport to Tissue. (Ed.) H. Bicher, D. Reneau, New York and London: Plenum Press, 1976.Google Scholar
  44. 44.
    Ikrenyi, K., Kovach, A., Somogyi, J.: Experimentalis Shockos Allatikbol Izolalt Agymitochondriumok Oxidacios Kepessege. In: Magyar Elettani Tarsasaga Yandorgyulese 38. Eloadaskivonatok, Budapest, p. 85, 1972.Google Scholar
  45. 45.
    Ikrenyi, K., Kovach, A., Somogyi, J.: Agymitochondriumok Oxidacios Kepessegenek Valtozasa Verezteteses Shockban. In: Magyar Elettani Tarsasag Vandorgyulese 39. Eloadaskivonatok, Pecs, p. 87, 1973.Google Scholar
  46. 46.
    Kovach, A.G.B., Fedina, L., Mitsanyi, A., Naszlady, A., Biro, Z.: Neurophysiological and circulatory changes in hemorrhagic shock. Excerpta Med. Int. Congr. Ser. 48:678, 1962.Google Scholar
  47. 47.
    Reivich, M., Kovach, A.G.B., Spitzer, J.J., Sandor, P.: Cerebral blood flow and metabolism in hemorrhagic shock in baboons. In: Neurohumoral and Metabolic Aspects of Injury. (Ed.) A.G.B. Kovach, H. B. Stoner, J.J. Spitzer, Plenum Press, New York and London, pp. 19–26, 1973.Google Scholar
  48. 48.
    Harbig, K., Reivich, M., Chance, B., Kovach, A.G.B.: Changes in pyridine nucleotide fluorescence in cerebral ischemia. In: Cerebral Vascular Diseases: Ninth Conference (Ed.). Whisnant and Sandok, New York, Grune &T Stratton, pp. 251–255, 1975.Google Scholar
  49. 49.
    Gyulai, L., Dora, E., Eke, A., Kovach, A.G.B.: Microvessel reactions and NAD-NADH changes in cat brain cortex during cortical stimulation under physiologic and hypercapnic conditions. Fed. Proc. 35:524, 1976.Google Scholar
  50. 50.
    Gyulai, L., Dora, E., Eke, A., Kovach, A.G.B.: Microvessel reactions and NAD-NADH changes in cat brain cortex during cortical sitmulation under normo-and hypercapnic conditions. In: Proc. 9th. World Conference of the European Microcirculation Society, Antwerp, 1976 (In press).Google Scholar
  51. 51.
    Kovach, A.G.B., Dora, E., Gyulai, L., Eke, A.: Oxido-reduction state, hemoglobin content and blood flow in cat brain cortex during hemorrhagic shock and the effect of phenoxybenzamine pretreatment. Fed. Proc. 35:26, 1976.Google Scholar
  52. 52.
    Kovach, A.G.B., Eke, A., Dora, E., Gyulai, L.: Correlation between the redox state, electrical activity and blood flow in cat brain cortex during hemorrhagic shock. In: Proc. 2nd. Int. Symp. on Oxygen Transport to Tissue. (Ed.) H. Bicher, D. Reneau. Plenum Press, New York and London, 1976.Google Scholar
  53. 53.
    Kovach, A.G.B., Hamar, J., Nyary, I., Sandor, P., Reivich, M.: Cerebral blood flow and metabolism in hemorrhagic shock in the baboon. In: Abstr. Cerebral Blood Flow and Metabolism. Symp. Aviemore, p. 14, 1975.Google Scholar
  54. 54.
    Dora, E., Chance, B., Kovach, A.G.B.: Locally induced NAD-NADH changes post-mortem in the rat brain cortex. Fed. Proc. 35:829, 1976.Google Scholar
  55. 55.
    Chance, B., Williams, G.R.: Respiratory enzymes in oxydative phosphorylation. J. Biol. Chem. 217:383–427, 1955.PubMedGoogle Scholar
  56. 56.
    Dora, E., Eke, A., Gyulai, L., Kovach, A.G.B.: Effect of hemorrhagic shock on the oxido-reduction state and blood content of the cat cerebral cortex. Annual Meeting of the Hungarian Physiological Society, Szeged. Acta Physiol. Acad. Sci. Hung. 1975 (In press).Google Scholar
  57. 57.
    Clark, J.B., Nicklas, W.I.: The metabolism of rat brain mitochondria. Preparation and characterization. J. Biol. Chem. 245:4724–4731, 1970.PubMedGoogle Scholar
  58. 58.
    Mela, L., Bacalzo, L.V., Miller, L.D.: Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxon shock. Am. J. of Physiol. 220:571, 1971.Google Scholar
  59. 57.
    Clark, J.B., Nicklas, W.I.: The metabolism of rat brain mitochondria. Preparation and characterization. J. Biol. Chem. 245:4724–4731, 1970.PubMedGoogle Scholar
  60. 58.
    Mela, L., Bacalzo, L.Y., Miller, L.D.: Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am. J. of Physiol. 220:571, 1971.Google Scholar
  61. 59.
    Mela, L., Crowe, W., Harbig, K., Wrobel-Kuhl, K., Kovach, A.G.B.: Inhibition of brain mitochondrial function and changes of tissue H+ and K+ concentration in hemorrhagic shock. Surg. Forum 26:51–53, 1974.Google Scholar
  62. 60.
    Mela, L., Harbig, K., Kovach, A.G.B., Reivich, M.: Response of Brain mitochondria to hemorrhagic shock. J. Neurochemistry, 1976 (In press).Google Scholar
  63. 61.
    Dora, E., Gyulai, L., Eke, A., Kovach, A.G.B.: Redox state and blood content changes induced by electrical stimulation of the cat brain cortex in hemorrhagic shock. Annual Meeting of the Hungarian Physiological Society, Budapest, Acta Physiol. Acad. Sci. Hung. 1976 (In press).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. G. B. Kovach
    • 1
  1. 1.Experimental Research Department Semmelweis Medical UniversityBudapestHungary

Personalised recommendations