Advertisement

Oxygen Sensing Heme Proteins: Monoxygenases, Myoglobin and Hemoglobin

  • I. C. Gunsalus
  • S. G. Sligar
  • T. Nordlund
  • H. Frauenfelder
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 78)

Abstract

Heme iron in the ferrous state is one of nature’s best di-oxygen sensors.1 A wide variety of protein structural environments incorporate heme and permit either oxygen binding, single electron redox processes, or both. The oxygen transport proteins myoglobin (Mb) and hemoglobin (Hb), for example, alternately bind and release oxygen. The P450 oxygenase2,3 heme proteins and cytochrome c oxidase, also bind oxygen in their biological role and, in addition, shuttle heme in a ferric-ferrous reduction and. reoxidation cycle. The cytochromes, in contrast, do not accept small molecules as a heme axial ligand as both available positions are occupied by amino acid residues from the primary protein structure. The sole function of these proteins is electron transfer by univalent ferric-ferrous redox processes, which are often coupled with energy storage for cellular work. A unique additional property of monoxygenase proteins (as well as the deoxygenases which will not be discussed in this paper) is the sensing of carbon substrates in addition to oxygen.

Keywords

Hydration Shell Heme Iron Activation Enthalpy Heme Protein Pyridine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes and References

  1. 1.
    Szent-Gyogyi, A. (1937) “Studies on Biological Oxidation and Some of its Catalysts” Eggenbergersome, Buchhandlung, Budapest.Google Scholar
  2. 2.
    Gunsalus, I. C., Pederson, T. C. and Sligar, S. G. (1975) Ann. Review Biochem. 44, 377.CrossRefGoogle Scholar
  3. 3.
    Hayaishi, O. (ed.) (1974), “Molecular Mechanisms of Oxygen Activation” Academic Press, New York.Google Scholar
  4. 4.
    Gunsalus, I. C., Meeks, J. R., Lipscomb, J. D., Debrunner, P. G. and Münck, E. (1974) in “Molecular Mechanisms of Oxygen Activation” (O. Hayaishi, ed.), Academic Press, New York, pp. 559–613.Google Scholar
  5. 5.
    Mason, H. S. (1957) Adv. Enzymology 19, 79.Google Scholar
  6. 6.
    Gillett, J. R. et al. (eds.) (1969) “Microsomes and Drug Oxidations”, Academic Press, New York.Google Scholar
  7. 7.
    Hamberg, M., Samuelsson, B., Bjorkhen, I., and Danielsson, H. (1974) in “Molecular Mechanisms of Oxygen Activation” (O. Hayaishi, ed.), Academic Press, New York.Google Scholar
  8. 8.
    Dickerson, R. E. and Geis, I. “The Structure and Action of Proteins” (1969) Harper-Row, New York.Google Scholar
  9. 9.
    Sligar, S. G. and Gunsalus, I. C. (1976) Proc. Nat. Acad. Sci. USA 73, 1078.PubMedCrossRefGoogle Scholar
  10. 10.
    Takemori, S., Sato, M., Gomi, T., Suhara, K. and Katagiri, M. (1975) Biochem. Biophys. Res. Comm. 67, 1151.PubMedCrossRefGoogle Scholar
  11. 11.
    Guengerich, F. P., Ballou, D. P. and Coon, M. J., J. Biol. Chem. 250, 7405.Google Scholar
  12. 12.
    Fridovich, J. (1974) in “Molecular Mechanisms of Oxygen Activation” (O. Hayaishi, ed.) Academic Press, New York.Google Scholar
  13. 13.
    Yu, G. A., Gunsalus, I. C., Katagiri, M., Suhara, K. and Takemori, S. (1974) J. Biol. Chem. 249, 94.PubMedGoogle Scholar
  14. 14.
    Lovenberg, W., (ed.) (1973) “Iron-Sulfur Proteins”, Vol. I, Academic Press, New York.Google Scholar
  15. 15.
    Tanaka, M., Haniu, M. and Yasunobu, K. (1973) J. Biol. Chem. 248, 1141.PubMedGoogle Scholar
  16. 16.
    Tanaka, M., Haniu, M., Yasunobu, K. T., Dus, K. and Gunsalus, I. C. (1974) J. Biol. Chem. 249, 3689.PubMedGoogle Scholar
  17. 17.
    Sligar, S. G., Debrunner, P. G., Lipscomb, J. D., Namtvedt, M. J. and Gunsalus, I. C. (1974) Proc. Nat. Acad. Sci. USA 71, 3906.PubMedCrossRefGoogle Scholar
  18. 18.
    Lipscomb, J. D., Sligar, S. G., Namtvedt, M. J. and Gunsalus, I. C. (1976) J. Biol. Chem. 251, 1116.PubMedGoogle Scholar
  19. 19.
    Sligar, S. (1975) Ph.D. Thesis, University of Illinois, Urbana.Google Scholar
  20. 20.
    Sharrock, M., Münck, E., Debrunner, P. G., Marshall, V. P., Lipscomb, J. D., and Gunsalus, I. C. (1973) Biochemistry 12, 258.PubMedCrossRefGoogle Scholar
  21. 21.
    Sharrock, M., Debrunner, P. G., Schulz, C., Lipscomb, J. D., Marshall, V. and Gunsalus, I. C. (1976) Biochem. Biophys. Acta 420, 8.PubMedCrossRefGoogle Scholar
  22. 22.
    Champion, P. M., Lipscomb, J. D., Münck, E., Debrunner, P. G. and Gunsalus, I. C. (1975) Biochemistry 14, 4151.PubMedCrossRefGoogle Scholar
  23. 23.
    Boyd, G. S. and Smellie, R. M. S. (eds.) “Biological Hydroxy-lation Mechanisms”, Biochem. Soc. Symp. 34, Academic Press, New York.Google Scholar
  24. 24.
    Sligar, S. G., Lipscomb, J. D., Debrunner, P. G. and Gunsalus, I. C. (1974) Biochem. Biophys. Res. Commun. 61, 290.PubMedCrossRefGoogle Scholar
  25. 25.
    Rahimtula, A., O’Brien, P., Hrycay, E., Peterson, J. and Estabrook, R. (1974) Biochem. Biophys. Res. Comm. 60, 695.PubMedCrossRefGoogle Scholar
  26. 26.
    Coon, M. J. et al. (1976) Adv. Exp. Medicine and Biology, 74, 270.Google Scholar
  27. 27.
    Hrycay, E., Gustafsson, J., Ingelman-Sundberg, M. and Ernster, L. (1975) Biochem. Biophys. Res. Comm. 66, 209.PubMedCrossRefGoogle Scholar
  28. 28.
    Sligar, S. G., Shastry, B. S. and Gunsalus, I. C. (1976) in “Microsomes and Drug Oxidations” (V. Ullrich, ed.) Plenum Press, New York.Google Scholar
  29. 29.
    Hollenberg, P., and Hager, L. (1973) J. Biol. Chem. 248, 2630.PubMedGoogle Scholar
  30. 30.
    Dolphin, D., Forman, D., Borg, J., Fajer, J. and Felton, R. (1971) Proc. Nat. Acad. Sci. USA 68, 614.PubMedCrossRefGoogle Scholar
  31. 31.
    Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. and Gunsalus, I. C. (1975) Biochemistry 14, 5355.PubMedCrossRefGoogle Scholar
  32. 32.
    Austin, R. H., Beeson, K., Eisenstein, L., Frauenfelder, H., Gunsalus, I. C. and Marshall, V. P. (1973) Science 181, 541.PubMedCrossRefGoogle Scholar
  33. 33.
    Alberding, N., Austin, R. H., Chan, Shirley S., Eisenstein, L., Frauenfelder, H., Gunsalus, I. C. and Nordlund, T. M. (1976) J. Chem. Phys. 65, 000.CrossRefGoogle Scholar
  34. 34.
    Austin, R. H., Beeson, K. W., Chan, S. S., Debrunner, P. G., Downing, R., Eisenstein, L., Frauenfelder, H. and Nordlund, T. M. (1976) Rev. Sci. Instrum. 47, 445.CrossRefGoogle Scholar
  35. 35.
    Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H., Gunsalus, I. C. and Marshall, V. P. (1974) Phys. Rev. Letters 32, 403.CrossRefGoogle Scholar
  36. 36.
    Mieyal, J. J., Ackerman, R. S., Blumen, J. L. and Freeman, L. S. (1976) J. Biol. Chem. 251, 3436.PubMedGoogle Scholar
  37. 37.
    Pederson, T. C., Austin, R. H. and Gunsalus, I. C. (1976) in “Microsomes and Drug Oxidations” (V. Ullrich, ed.) Plenum Press, New York.Google Scholar
  38. 38.
    Dayhoff, M. O. (ed.) (1972) “Atlas of Protein Sequence and Structure” Vol. V, The National Biochemical Research Foundation.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • I. C. Gunsalus
    • 1
  • S. G. Sligar
    • 1
  • T. Nordlund
    • 1
  • H. Frauenfelder
    • 1
  1. 1.Departments of Biochemistry and PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations