Advertisement

Changes in PO2 and Ion Fluxes in Cerebral Hypoxia-Ischemia

  • Ian A. Silver
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 78)

Abstract

Brain hypoxia may be produced by a number of pathological conditions ranging from the hyperacute to slow progressive changes over weeks or even years but ultimately leads to shifts in ionic balance. Cellular responses to hypoxic situations vary markedly according to the rate of onset of the condition and if it is complicated by ischemia, metabolic blockade, anemia, circulating toxins, tissue edema or other factors. Another major consideration is the normal activity of the cells which have been rendered hypoxic, their physiological function and their anatomical arrangement, particularly in relation to the microvasculature.

Keywords

Brain Cortex Spreading Depression Hypovolemic Shock Chronic Mountain Sickness Total Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katzman, R: Maintenance of a constant brain extracellular potassium. Fed. Proc. 35:1244–1247, 1976.PubMedGoogle Scholar
  2. 2.
    Lux, H.D., Neher, E: The equilibration time course of [K+] o in cat cortex. Exp. Brain. Res. 17:190–205, 1973.PubMedCrossRefGoogle Scholar
  3. 3.
    Sypert, G.W, Ward, A.A. Jnr: Changes in extracellular potassium activity during neocortical propagated seizures. Exp. Neurol. 45:19–25, 1974.PubMedCrossRefGoogle Scholar
  4. 4.
    Somjen, G.G, Rosenthal, M, Cordingley, G, LaManna, J, Lothman, E: Potassium, neuroglia and oxidative metabolisms in central grey matter. Fed. Proc. 35:1266–1271, 1976.PubMedGoogle Scholar
  5. 5.
    Bito, L.Z, Myers, R.E: On the physiological response of the cerebral cortex to acute stress. (Reversible asphyxia). J. Physiol. Lond. 221:349–370, 1972.PubMedGoogle Scholar
  6. 6.
    Dora, E, Zeuthen, T: Bra in metabolism and ion movements in the brain cortex of the rat during anoxia. In Kessler, M. et al (Editors): Ion Selective and Enzyme Electrodes in Biology and Medicine. Munich, Urban and Schwarzenberg, 1976, pp 294–298.Google Scholar
  7. 7.
    Vyskočil, F, Kris, N, Bures, J: Potassium sensitive micro-electrodes used for measuring the extracellular brain potassium concentration during spreading depression and anoxic depolarization in rats. Brain Res. 39:255–259, 1972.PubMedCrossRefGoogle Scholar
  8. 8.
    Zeuthen, T, Hiam, R, Silver, I.A: Recording of ion activities in brain with ion selective microelectrodes. In Berman, H.J, Herbert, N.C. (Editors): Ion Selective Microelectrodes. New York, Plenum Press, 1974.Google Scholar
  9. 9.
    Kovach, A.G.B, Sandor, P: Cerebral blood flow and brain function during hypotension and shock. Ann. Rev. Physiol. 38:571–596, 1976.CrossRefGoogle Scholar
  10. 10.
    Leao, A.A.P: Further observations on the spreading depression of activity in the cerebral cortex. J. Neurophysiol. 10: 409–414, 1947.PubMedGoogle Scholar
  11. 11.
    Prince, D.A, Lux, H.D, Neher, E: Measurement of extracellular potassium activity in cat cortex. Brain Res. 50:489–495, 1973.PubMedCrossRefGoogle Scholar
  12. 12.
    Mayevsky, A, Zeuthen, T, Chance, B: Measurements of extracellular potassium, ECOG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res. 76:347–349, 1974.PubMedCrossRefGoogle Scholar
  13. 13.
    Dora, E, Chance, B, Kovach, A.G.B, Silver, I.A: CO-induced localised toxic anoxia in the rat brain cortex. J. appl. Physiol. 39:875–878, 1975.PubMedGoogle Scholar
  14. 14.
    Kuschinsky, W, Wahl, M, Bosse, 0, Thorau, K: Perivascular potassium and pH as determinants of local pial arterial diameter in cats. Circulation Res. 31:240–247, 1972.PubMedCrossRefGoogle Scholar
  15. 15.
    Haddy, F.J, Scott, J.B: Metabolic factors in peripheral circulatory regulation. Fed. Proc. 34:2006–2011, 1975.PubMedGoogle Scholar
  16. 16.
    Heuser, D, Betz, E: Measurement of potassium ion and hydrogen ion activities by means of microelectrodes in brain vascular smooth muscle. In Kessler, M. et al (Editors): Ion Selective and Enzyme Electrodes in Biology and Medicine. Munich, Urban and Schwarzenberg, 1976, pp 320–330.Google Scholar
  17. 17.
    Monge, C., Whittembury, J: High altitude adaptations — whole animal. In Bligh, J. et al (Editors): Environmental Physiology of Animals. Oxford, Blackwell Scientific Publications, 1976 (in press).Google Scholar
  18. 18.
    Monge, M.C: Chronic mountain sickness. Physiol. Rev. 23: 148–165, 1943.Google Scholar
  19. 19.
    Walker, J.L: Ion specific, ion exchanger microelectrodes. Anal. Chem. 43:89–93A, 1971.CrossRefGoogle Scholar
  20. 20.
    Khuri, R.N, Agulian, S.K, Kalloghlian, A: Intracellular potassium in cells of the distal tubule. Pflugers Arch. ges. Physiol. 335:297–308, 1972.CrossRefGoogle Scholar
  21. 21.
    Hinke, J.A.M: Glass microelectrodes for measuring intracellular activities of sodium and potassium. Nature, Lond. 184:1257, 1959.CrossRefGoogle Scholar
  22. 22.
    Thomas, R.C: A new design of a sodium sensitive glass micro-electrode. J. Physiol. Lond. 210:82–83P, 1970.Google Scholar
  23. 23.
    Thomas, R.C; Intracellular pH of snail neurones measured with a new pH sensitive glass microelectrode. J. Physiol. Lond. 238:159–180, 1974.PubMedGoogle Scholar
  24. 24.
    Zeuthen, T: A double-barrelled Na+-sensitive electrode. J, Physiol. Lond. 254:8P, 1976.Google Scholar
  25. 25.
    Thomas, R.C: Intracellular sodium activity and the sodium pump in snail neurones. J. Physiol. Lond. 220:55–71, 1972.PubMedGoogle Scholar
  26. 26.
    Pick, J, Toth, K, Pungor, E, Vasak, M, Simon, W: A potassium selective silicone-rubber membrane electrode based on a neutral carrier. Anal. Chim. Acta. 64:477–480, 1973.CrossRefGoogle Scholar
  27. 27.
    Silver, I.A: Some observations on the cerebral cortex with an ultra-micro-membrane-covered oxygen electrode. Med. Electron Biol. Engng. 3:377–387, 1965.CrossRefGoogle Scholar
  28. 28.
    Whalen, W.J, Riley, J, Nair, P: A microelectrode for measuring intracellular PO2. J. appl. Physiol. 23:798–801, 1967.PubMedGoogle Scholar
  29. 29.
    Silver, I.A: Measurement of pH and ionic composition of pericellular sites. Phil. Trans. R, Soc. Lond. B. 271: 261–272, 1975.CrossRefGoogle Scholar
  30. 30.
    Lubbers, D.W, Baumgartl, M: Herstellungstechnick von palladinierten Pt-Stich-elektroden (1–5 μ Aussendruckmesser) zur polarographischen messung des Wasserstoffdruckes fur die Bestimmung der microzirkulation. Pflugers Arch. ges. Physiol. 294:R39, 1967.Google Scholar
  31. 31.
    Heidenreich, J, Erdmann, W, Metzger, H, Thews, G: Local hydrogen clearance and PO2 measurements in micro areas of the rat brain. Experientia 26:257–259, 1970.PubMedCrossRefGoogle Scholar
  32. 32.
    Stosseck, K, Lübbers, D.W, Cottin, N: Determination of local blood flow (microflow) by electrochemically generated hydrogen. Pflügers Arch. ges. Physiol. 348:225–238, 1974.CrossRefGoogle Scholar
  33. 33.
    Van Harreveld, A: The extracellular space in the central nervous system. In Bourne, G.H. (Editor): The Structure and Function of Nervous Tissue. New York, London, Academic Press, 1971, vol. IV, pp 447–511.Google Scholar
  34. 34.
    Skou, J.C: Enzymatic basis for active transport of Na and K, across cell membrane. Physiol. Rev. 45:596–603, 1965.PubMedGoogle Scholar
  35. 35.
    Dahl, J.L, Hokin, L.E: The sodium-potassium adenosinetri-phosphatase. Ann. Rev. Biochem. 43:327–336, 1974.PubMedCrossRefGoogle Scholar
  36. 36.
    Silver, I.A: The physiology of wound healing. In Hunt, T.K. (Editor): Wound Healing. Minneapolis, 3M Co. 1976 (in press).Google Scholar
  37. 37.
    Webb, L.S, Keele, B.B, Johnston, R.B: Inhibition of phagocytosis-associated chemiluminescence by superoxide dismutase. Infect. Immunity 9:1051–1056, 1974.Google Scholar
  38. 38.
    Schutz, H, Silverstein, P.R, Vapalahti, M, Bruce, D.A, Mela L, Langfitt, T.W: Brain mitochondrial function after ischemia and hypoxia: I. Ischemia induced by increased intracranial pressure. Arch. Neurol. 29:408–416, 1973a.CrossRefGoogle Scholar
  39. 39.
    Schutz, H, Silverstein, P.R, Vapalahti, M, Bruce, D.A, Mela, L, Langfitt, T.W: Brain mitochondrial function after ischemia and hypoxia: II. Normotensive systemic hypoxemia. Arch. Neurol. 29:417–425, 1973b.CrossRefGoogle Scholar
  40. 40.
    Lowry, O.H, Passonneau, J.V, Hasselberger, F.X, Schultz, D.W: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239:18–30, 1964.PubMedGoogle Scholar
  41. 41.
    Siesjo, B.K, Zwetnow, N.N: The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and on energy metabolites in the rat brain. Acta. Physiol. Scand. 79:114–124, 1970.PubMedCrossRefGoogle Scholar
  42. 42.
    Haidane, J.B.S: Symptoms, causes and prevention of anoxaemia (insufficient oxygen supply to the tissues) and the value of oxygen in its treatment. Brit. Med. J. 2:65–71, 1919.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Ian A. Silver
    • 1
  1. 1.Department of Pathology, The Medical SchoolUniversity of BristolBristolEngland

Personalised recommendations