Regional Changes in Metabolism in Hypoxia-Ischemia

  • F. A. Welsh
  • M. J. O’Connor
  • W. Rieder
  • V. R. Marcy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 78)


The purpose of this study is to describe regional metabolic changes following an episode of cerebral ischemia in the cat. Regional characterization of metabolic derangements is imperative because it is unlikely that cerebral blood flow is uniformly reduced in most hypoxic-ischemic episodes.1, 2, 3 Furthermore, neurons in discrete anatomic regions such as hippocampus or arterial border zones4 are selectively vulnerable to hypoxia-ischemia. Consequently, we have investigated regional alterations of cerebral metabolites in a model of incomplete ischemia (oligemia).


White Matter Gray Matter Metabolite Level Cortical Surface Subcortical White Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siesjo BK, Johannsson H, Ljunggren B, Norberg K: Brain Dysfunction in Cerebral Hypoxia and Ischemia. Res. Publ. Assoc. Nerve Ment. Dis. 53:75–112, 1974.Google Scholar
  2. 2.
    Eklöf B, Siesjo BK: Cerebral Blood Flow in Ischemia Caused by Carotid Artery Ligation in the Rat. Acta Physiol. Scand. 87:69–77, 2973.CrossRefGoogle Scholar
  3. 3.
    Welsh FA, Durity F, Langfitt TW: The Appearance of Regional Variation in Metabolism at a Critical Level of Diffuse Cerebral Oligemia. Submitted to J. Neurochem. 1976.Google Scholar
  4. 4.
    Lindenberg R: Patterns of CNS Vulnerability in Acute Hypoxaemia, including Anaesthesia Accidents. In Schade JP, McMenemey WH (Editors): Selective Vulnerability of the Brain in Hypoxaemia. Philadelphia, FA Davis Pulbishing Company, 1963, pp 189–209.Google Scholar
  5. 5.
    Lowry OH, Passonneau JV: A Flexible System of Enzymatic Analysis. New York, Academic Press, 1972.Google Scholar
  6. 6.
    Schuette WH, Whitehouse, WC, Lewis DV, O’Connor, M, van Buren JM: A Television Fluorometer for Monitoring Oxidative Metabolism in Intact Tissue. Med. Instrum. 8:331–333, 1974.PubMedGoogle Scholar
  7. 7.
    Ponten U, Ratcheson RA, Salford LG, Siesjö BK: Optimal Freezing Conditions for Cerebral Metabolites in Rats. J. Neurochem. 21: 1127–1138, 1973.PubMedCrossRefGoogle Scholar
  8. 8.
    Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW: Effect of Ischemia on Known Substrates and Cofactors of the Glycolytic Pathway in Brain. J. Biol. Chem. 239:18–30, 1964PubMedGoogle Scholar
  9. 9.
    Lierse W: Die Kapillarastände in verschiedenen Hirnregionen der Katze. Z. Zellforsch. 54:199–206, 1961.PubMedCrossRefGoogle Scholar
  10. 10.
    McIlwain H: Biochemistry and the Central Nervous System. Boston; Little, Brown and Company, Third Edition, 1966, p 55.Google Scholar
  11. 11.
    Reivich M: Blood Flow Metabolism Couple in Brain. Res. Publ. Assoc. Nerve Ment. Dis. 53:125–139, 1974.Google Scholar
  12. 12.
    Silver IA: Changes in pO2 and Ion Fluxes in Cerebral Hypoxiaischemia. These Proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • F. A. Welsh
    • 1
  • M. J. O’Connor
    • 1
  • W. Rieder
    • 1
  • V. R. Marcy
    • 1
  1. 1.Division of NeurosurgeryUniv. of Penna.PhiladelphiaUSA

Personalised recommendations