Skip to main content

The Oxygen Sensing Characteristics of Microsomal Enzymes

  • Chapter
Tissue Hypoxia and Ischemia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 78))

Abstract

The endoplasmic reticulum (microsomal fraction) of many types of tissues contains an electron transport system composed of hemoproteins and flavoproteins which function in the oxygen dependent transformation of a wide variety of natural and foreign chemicals. Although less well characterized than the mitochondrial respiratory chain, microsomal oxygenase reactions, in particular those in which cytochrome P-450 plays a central role, have attracted a great deal of attention recently because of the potential harmful effects of formed epoxide products as causative agents for chemical carcinogenesis as well as the function of this electron transport system for the detoxification of a variety of drugs as related to the pharmacologic effectiveness of these chemicals. The purpose of the present paper is to provide a brief overview of our current knowledge of the oxidative reactions catalyzed by microsomes and to identify a few areas of current interest related to the reaction of oxygen with the unique hemoprotein, cytochrome P-450. The details of many of these reactions have been discussed at recent symposia (1–4).

Supported in part bya grant (NIGMS - 16488) from the National Institutes of Health of the USPHS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oxidases and Related Redox Systems, edited by T. E. King, H. S. Mason and M. Morrison. University Park Press, Baltimore, Md., 1973.

    Google Scholar 

  2. Microsomes and Drug Oxidations, edited by R. W. Estabrook, J. Gillette, and K. Leibman, The Williams and Wilkins Company, Baltimore, Md., 1973.

    Google Scholar 

  3. Biological Hydroxylation Mechanisms, edited by G. S. Boyd and R. M. S. Smellie, Academic Press, London, 1972.

    Google Scholar 

  4. Proceedings of The Third International Symposium on Microsomes and Drug Oxidations, edited by V. Ullrich, A. G. Hildebrandt, R. W. Estabrook, and A. Gonney, Pergamon Press, Oxford, in press.

    Google Scholar 

  5. Hochstein, P. and Ernster, L., ADP-activated lipid peroxidation coupled to the TPNH system of microsomes. Biochem. Biophys. Res. Commun. 12: 338–394, 1963.

    Article  Google Scholar 

  6. Tarn, B. K. and McCay, P. B., Reduced triphosphopyridine nucleotide oxidase — catalyzed alterations of membrane phospholipids, III Transient formation of phospholipid peroxides. J. Biol. Chem. 245: 2295–2300, 1970.

    Google Scholar 

  7. Pederson, T. C. and Aust, S. D., The mechanism of liver microsomal lipid peroxidation. Biochim. Biophys. Acta 385: 323–341, 1975.

    Article  Google Scholar 

  8. Kellogg, E. W. and Fridovich, I., Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol. Chem. 250: 8812–8817, 1975.

    PubMed  CAS  Google Scholar 

  9. Schmid, R. and McDonagh, A. F., The enzymatic formation of bilirubin. Annals of the New York Academy of Sciences, 244: 533–552, 1975.

    Article  PubMed  CAS  Google Scholar 

  10. Masters, B. S. S. and Schacter, B. A., The catalysis of heme degradation by purified NADPH — cytochrome c reductase in the absence of other microsomal proteins. Annals of Clinical Research, Vol. 8, suppl. 17: 18–27, 1976.

    PubMed  CAS  Google Scholar 

  11. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R., Purification and properties of rat liver microsomal stearyl Coenzyme A desaturase. Proc. Natl. Acad. Sci. (USA), 71: 4565–4569, 1974.

    Article  CAS  Google Scholar 

  12. Holloway, P. W., A requirement for three protein components in microsomal stearyl Coenzyme A desaturation. Biochemistry: 10, 1556–1560, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Oshino, N., Imai, Y., and Sato, R., A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J. Biochem. (Tokyo): 69, 155–168, 1971.

    CAS  Google Scholar 

  14. Ziegler, D. M. and Mitchell, C. H., Microsomal Oxidase IV: Properties of a mixed function amine oxidase isolated from pig liver microsomes. Archives of Biochem. Biophys. 150: 116–125, 1972.

    Article  CAS  Google Scholar 

  15. Kadlubar, F. F. and Ziegler, D. M., Properties of a NADH-de-pendent N-hydroxy amine reductase isolated from pig liver microsomes. Archives of Biochem. Biophys. 162: 83–92, 1974.

    Article  CAS  Google Scholar 

  16. Ziegler, D. M., Hyslop, R. M., and Poulsen, L. L., Sulfur containing substrates for the microsomal dimethylaniline mono-oxygenase (N-oxide forming). Hoppe-Seyler1s Z. Physiol. Chem. 357: 1067, 1976.

    Google Scholar 

  17. Remmer, H. and Merker, H. J. Effect of drugs on the formation of smooth endoplasmic reticulum and drug metabolizing enzymes. Annals of the New York Acad. Sei. 123: 79–97, 1965.

    Article  CAS  Google Scholar 

  18. Conney, A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19: 317–366, 1967.

    PubMed  CAS  Google Scholar 

  19. Estabrook, R. W., Franklin, M. R., Cohen, B., Shigematsu, A., and Hildebrandt, A. G. Biochemical and genetic factors influencing drug metabolism: The influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism 2: 187–199, 1971.

    Article  Google Scholar 

  20. Longmuir, I. S., Sun, S., and Soucie, W., Possible role of cytochrome P-450 as a tissue oxygen carrier. In Oxidases and Related Redox Systems, edited by T. E. King, H. S. Mason, and M. Morrison, University Park Press, Baltimore, Md., 1973, Vol. 2, pgs. 451–455.

    Google Scholar 

  21. Estabrook, R. W., Peterson, J., Baron, J. and Hildebrandt, A., The spectrophotometric measurement of turbid suspensions of cytochromes associated with drug metabolism. In Methods in Pharmacology, Volume 2, Physical Methods, edited by C. F. Chignell, Appleton-Century-Crofts, New York, 1972, pgs. 303–350.

    Google Scholar 

  22. Rogers, M. J. and Strittmatter, P., Evidence for random distribution and translational movement of cytochrome b5 in endoplasmic reticulum. J. Biol. Chem. 249: 895–900, 1974.

    PubMed  CAS  Google Scholar 

  23. Peterson, J. A., Ebel, R. E., O’Keeffe, D. H., Matsubara, T., and Estabrook, R. W., Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase: cytochrome P-450 interaction. J. Biol. Chem. 251: 4010–4016, 1975.

    Google Scholar 

  24. Yang, C. S. and Strickhart, F. S., Interactions between solu-bilized cytochrome P-450 and hepatic microsomes. J. Biol. Chem. 250: 7968–7972, 1975.

    PubMed  CAS  Google Scholar 

  25. Thurman, R. G. and Scholz, R., Mixed function oxidation in perfused rat liver. The effect of aminopyrine on oxygen uptake. Eur. J. Biochem. 10: 459–467, 1969.

    Article  PubMed  CAS  Google Scholar 

  26. Thurman, R. G. and Scholz, R. Interactions of mixed-function oxidation with biosynthetic processes. 2. Inhibition of lipogenesis by aminopyrine in perfused rat liver. Eur. J. Biochem. 38: 73–78, 1973.

    Article  PubMed  CAS  Google Scholar 

  27. Sies, H. and Brauser, B., Interaction of mixed function oxidase with its substrates and associated redox transitions of cytochrome P-450 and pyridine nucleotides in perfused liver. Eur. J. Biochem. 15: 531–540, 1970.

    Article  PubMed  CAS  Google Scholar 

  28. Brauser, B., Sies, H. and Bucher, Th., Action of amobarbital on microsomal and mitochondrial respiratory state in perfused rat liver with and without phenobarbital induction. FEBS Letters, 2: 170–176, 1969.

    Article  PubMed  CAS  Google Scholar 

  29. Estabrook, R. W., Hildebrandt, A., Remmer, H., Schenkman, J. B., Rosenthal, O., and Cooper, D. Y. The role of cytochrome P-450 in microsomal mixed function oxidation reactions. In Biochemie des Sauerstoffs, edited by B. Hess and Hj. Staudinger, 19. Colloquium der Gesellschaft für Biologische Chemie. Springer-Verlag, Berlin, 1968, pgs. 142–177.

    Chapter  Google Scholar 

  30. Ullrich, V., Cohen, B., Cooper, D. Y., and Estabrook, R. W. Reactions of hemoprotein P-450. In Structure and Function of Cytochromes, edited by K. Okunuki, M. D. Kamen, and I. Sekuzu, University of Tokyo Press, Tokyo, and University Park Press, Baltimore, Maryland, 1968, pgs. 649–655.

    Google Scholar 

  31. Staudinger, Hj., Kerekjarto, B., Ullrich, V. and Zubrzycki, Z. A study of the mechanism of microsomal hydroxylation. In Oxidases and Related Redox Systems, edited by T. E. King, H. S. Mason, and M. Morrison, John Wiley and Sons Inc., New York, 1964, Volume 2, pgs. 815–832.

    Google Scholar 

  32. Kampffmeyer, H. and Kiese, M. The hydroxylation of aniline and N-ethylaniline by microsomal enzymes at low oxygen pressures. Biochem. Z. 339: 454–459 (1964).

    PubMed  CAS  Google Scholar 

  33. Nash, T., The colorometric estimation of formaldehyde by means of the Hantzch reaction. Biochem. J. 55: 416–421, 1953.

    PubMed  CAS  Google Scholar 

  34. Werringloer, J. and Estabrook, R. W., The formation of hydrogen peroxide during microsomal electron transport reactions, Z. physiol. chem. 357: 1063, 1976.

    Google Scholar 

  35. Estabrook, R. W. and Werringloer, J., Active oxygen — fact or fancy. In the Proceedings of the Third International Symposium on Microsomes and Drug Oxidations, edited by V. Ullrich, A. Hildebrandt, R. Estabrook, and A. Conney, Pergamon Press, Oxford, 1976, in press.

    Google Scholar 

  36. Alcohol and Aldehyde Metabolizing Systems, edited by R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance. Academic Press, Inc., New York, New York, 1974.

    Google Scholar 

  37. Lieber, C. S. and DeCarli, L. M., Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J. Biol. Chem. 245: 2505–2512, 1970.

    PubMed  CAS  Google Scholar 

  38. Thurman, R. G., Ley, H. G., and Scholz, R., Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur. J. Biochem. 25: 420–430, 1972.

    Article  PubMed  CAS  Google Scholar 

  39. Teschke, R., Hasumura, Y., and Lieber, C. S., Hepatic microsomal alcohol-oxidizing system. Affinity for methanol, ethanol, propanol and butanol. J. Biol. Chem. 250: 7397–7404, 1975.

    PubMed  CAS  Google Scholar 

  40. Hildebrandt, A. G. and Roots, I., Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakr down of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Archives Biochem. Biophys. 171: 385–397, 1975.

    Article  CAS  Google Scholar 

  41. Estabrook, R. W., Cooper, D. Y., and Rosenthal, O., The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex. Biochem. Z. 338: 741–755, 1963.

    PubMed  CAS  Google Scholar 

  42. Werringloer, J., Hildebrandt, A., and Estabrook, R. W., Hydrogen peroxide formation and breakdown by the liver microsomal electron transport system. Abstracts of the Tenth International Congress of Biochemistry, Hamburg, Germany, July, 1976., pg. 292.

    Google Scholar 

  43. Kadlubar, F. F., Morton, K. C., and Ziegler, D. M., Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines. Biochem. Biophys. Res. Comm. 54: 1255–1261, 1973.

    Article  PubMed  CAS  Google Scholar 

  44. Hrycay, E. G. and O’Brien, P. J., Cytochrome P-450 as a microsomal peroxidase in steroid hydroperoxide reduction. Arch. Biochem. Biophys. 153: 480–494, 1972.

    Article  PubMed  CAS  Google Scholar 

  45. Hrycay, E. G. and O’Brien, P. J., Microsomal electron transport I. Reduced nicotinamide adenine dinucleotide phosphate-cyto-chrome c reductase and cytochrome P-450 as electron carriers in microsomal NADPH-peroxidase activity. Arch. Biochem. Biophys. 157: 7–22, 1973.

    Article  PubMed  CAS  Google Scholar 

  46. Hrycay, E. G. and O’Brien, P. J., Microsomal electron transport II. Reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome P-450 as electron carriers in microsomal NADH-peroxidase activity. Arch. Biochem. Biophys. 160: 230–245, 1974.

    Article  PubMed  CAS  Google Scholar 

  47. Rahimtula, A. D., O’Brien, P. J., Hrycay, E. G., Peterson, J. A., and Estabrook, R. W., Possible higher valence states of cytochrome P-450 during oxidative reactions. Biochem. Biophys. Res. Comm. 60: 695–702, 1974.

    Article  PubMed  CAS  Google Scholar 

  48. Yonetani, T. and Schleyer, H., Studies on cytochrome c peroxidase. IV: The reaction of ferrimyoglobin with hydroxyperoxide and a comparison of the peroxide-induced compounds of ferrimyoglobin and cytochrome c — peroxidase. J. Biol. Chem. 242: 1974–1979, 1967.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Estabrook, R.W., Werringloer, J. (1977). The Oxygen Sensing Characteristics of Microsomal Enzymes. In: Reivich, M., Coburn, R., Lahiri, S., Chance, B. (eds) Tissue Hypoxia and Ischemia. Advances in Experimental Medicine and Biology, vol 78. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9035-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9035-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9037-8

  • Online ISBN: 978-1-4615-9035-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics