Skip to main content

Role of Cytochrome b5 in the NADH Synergism of NADPH-Dependent Reactions of the Cytochrome P-450 Monooxygenase System of Hepatic Microsomes

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 58))

Abstract

Two systems are known to transfer electrons in hepatic microsomes: 1) the NADPH-dependent cytochrome P-450 monooxygenase system, and 2) the NADH dependent cytochrome b5 system. Their coexistence in the same organelle suggested to Estabrook and associates (Estabrook et al., 1971; Hildebrandt and Estabrook, 1971) that the systems might interact during the oxidation of drug substrates in much the same way electron transfer systems interact in mitochrondria. As evidence for the interaction of the two systems, they showed that the rate of NADH oxidation by liver microsomes was enhanced in the presence of NADPH and drug substrate, and that the rate of oxidation of NADH was related to the rate of oxidation of the substrate. They further implicated cytochrome b5 in cytochrome P-450 monooxygenase reactions by showing that the steady state of reduced cytochrome b5 in the presence of NADPH and NADH was decreased by the addition of drug substrate. Other experiments eliminated some alternative possibilities that might explain these observations, e.g., the possibility that NADH was converted to NADPH, or that NADH was sparing NADPH used in competing reactions occurring simultaneously in microsomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Björkhem, I. and Danielsson, H. 1973. Heterogeneity of hepatic mixed function oxidases. Biochem. Biophys. Res. Comm. 51: 766–774.

    Article  PubMed  Google Scholar 

  • Buening, M. and Franklin, M. 1974. Limitations in the use of the 340 nm absorbance maximum of NADPH for the determination of oxidation rates and stoichiometry during rat hepatic microsomal metabolism. Mol. Pharmacol, in press.

    Google Scholar 

  • Chaplin, M. D. and Mannering, G. J. 1970. Role of phospholipids in the hepatic microsomal drug metabolizing system. Mol. Pharmacol. 6: 631–640.

    PubMed  CAS  Google Scholar 

  • Cinti, D. L. and Ozols, J. 1975. The role of cytochrome b5 in mixed function oxidations: effect of microsomal binding of the hemoprotein on hepatic N-demethylations. This publication.

    Google Scholar 

  • Cinti, D. L., Moldeus, P. and Schenkman, J. B. 1972. The role of the mitochondria in rat liver mixed function oxidation reactions. Biochem. Biophys. Res. Comm. 47: 1028–1035.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, B. S. and Estabrook, R. W. 1971. Microsomal electron transport reactions. II. The use of reduced triphospho-pyridine nucleotide for the oxidative N-demethylation of aminopyrine and other drug substrates. Arch. Biochem. Biophys. 143: 46–53.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G. M. and Mannering, G. J. 1974. Sex-dependent differences in drug metabolism in the rat. III. Temporal changes in Type I binding and NADPH-cytochrome P-450 reductase during sexual maturation. Drug Metab. Disp. 2: 285–292.

    CAS  Google Scholar 

  • Conney, A. H. 1967. Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19: 317–366.

    PubMed  CAS  Google Scholar 

  • Conney, A. H., Brown, R. R., Miller, J. A. and Miller, E. C. 1957. The metabolism of methylated aminoazo dyes. VI. Intracellular distribution and properties of the demethylase system. Cancer Res. 17: 628–633.

    PubMed  CAS  Google Scholar 

  • Coon, M. J., van der Hoeven, T. A., Haugen, D. A., Guengerich, F. P., Vermilion, J. L. and Bailou, D. P. 1975. Biochemical characterization of highly purified cytochrome P-450 and other components of the mixed function oxidase system of liver microsomal membranes. This volume, p. 26.

    Google Scholar 

  • Correia, M. A. and Mannering, G. J. 1973a. DPNH synergism of TPNH-dependent mixed function oxidase reactions. Drug Metab. Disp. 1: 139–149.

    CAS  Google Scholar 

  • Correia, M. A. and Mannering, G. J. 1973b. Reduced diphospho-pyridine nucleotide synergism of the reduced triphospho-pyridine. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation. Mol. Pharmacol. 9: 455–469.

    PubMed  CAS  Google Scholar 

  • Correia, M. A. and Mannering, G. J. 1973c. Reduced diphospho-pyridine nucleotide synergism of the reduced triphospho-pyridine. II. Role of Type I drug-binding site of cytochrome P-450. Mol. Pharmacol. 9: 470–485.

    PubMed  CAS  Google Scholar 

  • Enomoto, K. and Sato, R. 1973. Incorporation in vitro of purified cytochrome b2 into liver microsomal membranes. Biochem. Biophys. Res. Comm. 51: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Estabrook, R. W., Shigematsu, A. and Schenkman, J. B. 1970. The contribution of the microsomal electron transport pathway to the oxidative metabolism of liver. Adv. Enzyme Reg. 8: 121–130.

    Article  CAS  Google Scholar 

  • Estabrook, R. W., Franklin, M., Baron, J., Shigematsu, A. and Hildebrandt, A. 1971. Properties of the membrane-bound electron transfer complex of the hepatic endoplasmic reticulum associated with drug metabolism. IN E. Mihich, Ed., Drugs and Cell Regulation, 227–257.

    Google Scholar 

  • Gigon, P. L., Gram, T. E. and Gillette, J. R. 1968. Effect of drug substrates on the reduction of hepatic microsomal cytochrome P-450 by NADPH. Biochem. Biophys. Res. Comm. 31: 558–562.

    Article  PubMed  CAS  Google Scholar 

  • Gigon, P. L., Gram, T. E. and Gillette, J. R. 1969. Studies on the rate of reduction of hepatic microsomal cytochrome P-450 by reduced nicotinamide adenine dinucleotide phosphate: effect of drug substrates. Mol. Pharmacol. 5: 109–122.

    PubMed  CAS  Google Scholar 

  • Gillette, J. R. 1966. Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum. Advan. Pharmacol. 4: 219–261.

    Article  CAS  Google Scholar 

  • Gillette, J. R. 1971. Factors affecting drug metabolism. Ann. N. Y. Acad. Sci. 179: 43–66.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, A. and Estabrook, R. W. 1971. Evidence for the participation of cytochrome b5 in hepatic microsomal mixed function oxidation reactions. Arch. Biochem. Biophys. 143: 66–79.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, J. L. 1970. Effect of 4,4-dideuteration of reduced nicotinamide adenine dinucleotide phosphate on the mixed function oxidases of hepatic microsomes. Biochemistry 9: 995–1001.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, J. L. and Carr, M. L. 1970. Inhibition of hepatic microsomal mixed function oxidases by D2O. Life Sci. 9: 1033–1038.

    Article  CAS  Google Scholar 

  • Holtzman, J. L. and Rumack, B. H. 1971. The kinetics of cytochrome P-450 reductase stimulation by ethylmorphine. Life Sci. 10: 669–677.

    Article  CAS  Google Scholar 

  • Hrycay, E. G. and Estabrook, R. W. 1974. The effect of extra bound cytochrome b5 on cytochrome P-450-dependent enzyme activities in liver microsomes. Biochem. Biophys. Res. Comm. 60: 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Imai, Y. and Omura, T. 1974. Unpublished results cited by Mannering, Kuwahara and Omura (Biochem. Biophys. Res. Comm. 57:476–481).

    Article  Google Scholar 

  • Imai, Y. and Sato, R. 1966. Substrate interaction with hydroxylase system in liver microsomes. Biochem. Biophys. Res. Comm. 22: 620–626.

    Article  PubMed  CAS  Google Scholar 

  • Jansson, I. and Schenkman, J. B. 1973. Evidence against participation of cytochrome b5 in the hepatic microsomal mixed-function oxidase reaction. Mol. Pharmacol. 9: 840–845.

    PubMed  CAS  Google Scholar 

  • Jeffery, E. and Mannering, G. J. 1974a. Discrepancy in the measurement of TPNH oxidized during N-demethylation due to the presence of nucleotide pyrophosphatase. Mol. Pharmacol, in press.

    Google Scholar 

  • Jeffery, E. and Mannering, G. J. 1974b. Unpublished results.

    Google Scholar 

  • Lichtenberger, F. 1975. Discussion in this publication.

    Google Scholar 

  • Lu, A. Y. H. 1974. Private communication.

    Google Scholar 

  • Lu, A. Y. H., West, S. B., Vore, M., Ryan, D. and Levin, W. 1974. Role of cytochrome b5 in hydroxylation by a reconstituted cytochrome P-450-containing system. J. Biol. Chem. 249, in press.

    Google Scholar 

  • Lu, A. Y. H., Levin, W., West, S. B., Vore, M., Ryan, D. Kuntzman, and Conney, A. H. 1975. Role of cytochrome b5 in NADPH-and NADH-dependent hydroxylation by the reconstituted cytochrome P-450- or P-448-containing system. This publication.

    Google Scholar 

  • Mannering, G. J. 1968. Significance of stimulation and inhibition of drug metabolism in pharmacological testing. In A. Burger, Ed. Selected Pharmacological Testing Methods, 51–119.

    Google Scholar 

  • Mannering, G. J. 1971a. Role of substrate binding to P-450 hemoprotein in drug metabolism. IN E. Mihich, Ed., Drugs and Cell Regulation, 197–225.

    Google Scholar 

  • Mannering, G. J. 1971b. Properties of cytochrome P-450 as affected by environmental factors: qualitative changes due to administration of polycyclic hydrocarbons. Metabolism 20: 228–245.

    Article  PubMed  CAS  Google Scholar 

  • Mannering, G. J. 1971c. Microsomal enzyme systems which catalyze drug metabolism. IN B. N. LaDu, H. G. Mandel and E. L. Way, Eds. Fundamentals of Drug Metabolism and Drug Disposition, 206–252.

    Google Scholar 

  • Mannering, G. J., Kuwahara, S. and Omura, T. 1974. Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADH-dependent mono-oxidase system of hepatic microsomes. Biochem. Biophys. Res. Comm. 57: 476–481.

    Article  PubMed  CAS  Google Scholar 

  • Modurzadeh, J. and Kamin, H. 1965. Reduction of microsomal cytochromes by pyridine nucleotides. Biochem. Biophys. Acta. 99: 205–226.

    Google Scholar 

  • Netter, K. J. and Illing, H. P. A. 1974. Kinetic experiments on the synergistic effect of NADH on microsomal drug oxidation. Xenobiotica 4: 549–561.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. and Mannering, G. J. 1974. Unpublished results.

    Google Scholar 

  • Oshino, N. 1972. Dynamic behavior during dietary induction of the terminal enzyme (cyanide-sensitive factor) of the stearyl CoA desaturation system of rat liver microsomes. Arch. Biochem. Biophys. 149: 378–387.

    Article  PubMed  CAS  Google Scholar 

  • Oshino, N., Imai, Y. and Sato, R. 1971. A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J. Biochem. 69: 155–168.

    PubMed  CAS  Google Scholar 

  • Oshino, N. and Sato, R. 1971. Stimulation by phenols of the re-oxidation of microsomal bound cytochrome b5 and its implication to fatty acid desaturation. J. Biochem. 69: 169–180.

    PubMed  CAS  Google Scholar 

  • Oshino, N. and Sato, R. 1972. Dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver. Arch.Biochem. Biophys. 149: 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Sasame, H. A., Mitchell, J. R., Thorgeirsson, S. and Gillette, J. R. 1973. Relationship between NADH and NADPH oxidation during drug metabolism. Drug Metab. Disp. 1: 150–155.

    CAS  Google Scholar 

  • Sasame, H. A., Thorgeirsson, S. S., Mitchell, J. R. and Gillette, J. R. 1974a. The possible involvement of cytochrome b5 in the oxidation of lauric acid by microsomes from kidney cortex and liver of rats. Life Sci. 14: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Sasame, H. A., Thorgeirsson, S. S., Menard, R. H., Hinson, J. A., Mitchell, J. R., and Gillette, J. R. 1974b. A role of cytochrome b5 in both NADH and NADPH-mediated cytochrome P-450 enzymatic reaction in mammalian tissues. Fed. Proc. 33: 1437.

    Google Scholar 

  • Sasame, H. A., Thorgeirsson, S. S., Mitchell, J. R. and Gillette, J. R. 1975. The role of cytochrome b5 in cytochrome P-450 enzymes. This publication.

    Google Scholar 

  • Schenkman, J. B. 1968. Effect of substrates on hepatic microsomal cytochrome P-450. Hoppe-Seyler’s Z. Physiol. Chem. 349: 1624–1628.

    PubMed  CAS  Google Scholar 

  • Schenkman, J. B. and Jansson, I. 1975. Interaction between microsomal electron transfer pathways. This publication.

    Google Scholar 

  • Schenkman, J. B., Frey, I., Remmer, H. and Estabrook, R. W. 1967. Sex differences in drug metabolism by rat liver microsomes. Mol. Pharmacol. 3: 516–525.

    PubMed  CAS  Google Scholar 

  • Shoeman, D. W., Chaplin, M. D. and Mannering, G. J. 1969. Induction of drug metabolism. III. Further evidence for the formation of a new P-450 hemoprotein after treatment of rats with 3-methylcholanthrene. Mol. Pharmacol. 5: 412–419.

    CAS  Google Scholar 

  • Sitar, D. S. and Mannering, G. J. 1973. Determination of apparent kinetic constants of the microsomal hydroxylation of amo-barbital, hexobarbital and pentobarbital. Drug Metab. Disp. 1: 663–668.

    CAS  Google Scholar 

  • Strittmatter, P., Rogers, M. J. and Spatz, L. 1972. The binding of cytochrome b5 to liver microsomes. J. Biol. Chem. 247: 7188–7194.

    PubMed  CAS  Google Scholar 

  • Staudt, H., Lichtenberger, F. and Ullrich, V. 1974. The role of NADH in uncoupled microsomal monoxygenations. Eur. J. Biochem. 46: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • van der Hoeven, T. A., Haugen, D. A., and Coon, M. J. 1974. Cytochrome P-450 purified to apparent homogeneity from phenobar-bital-induced rabbit liver microsomes: catalytic activity and other properties. Biochem. Biophys. Res. Comm. 60: 569–575.

    Google Scholar 

  • West, S. B., Levin, W., Ryan, D., Vore, M. and Lu, A. Y. H. 1974. Liver microsomal electron transport systems. II. The involvement of cytochrome b5 in the NADH-dependent hydroxylation of 3,4-benzpyrene by a reconstituted cytochrome P-448-containing system. Biochem. Biophys. Res. Comm. 58: 516–522.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Mannering, G.J. (1975). Role of Cytochrome b5 in the NADH Synergism of NADPH-Dependent Reactions of the Cytochrome P-450 Monooxygenase System of Hepatic Microsomes. In: Cooper, D.Y., Rosenthal, O., Snyder, R., Witmer, C. (eds) Cytochromes P-450 and b5 . Advances in Experimental Medicine and Biology, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9026-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9026-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9028-6

  • Online ISBN: 978-1-4615-9026-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics