Skip to main content

Ionic Activities in Identifiable Aplysia Neurons

  • Chapter
Ion-Selective Microelectrodes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 50))

Abstract

This paper reports the values of K+, Na+ and Cl- activities measured with ion-selective microelectrodes in certain identifiable neurons in the abdominal ganglion of Aplysia californica (nomenclature according to Frazier, et al., 1967). These measurements allow calculation of the equilibria potentials of the three ions thought to be most important in regulating intracellular voltage. The ion-selective microelectrode technique makes such measurements possible in small cells; moreover these values can be compared amongst neurons which are anatomically and functionally distinct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, A.M., J.L. Walker, Jr., and R.B. Sutton. 1970. Increased chloride conductance as the proximate cause of pH effects in Aplysia neurons. J. Gen. Physiol. 56: 559–582.

    Article  PubMed  CAS  Google Scholar 

  • Brown, H.M., and A.M. Brown. 1972. Ionic basis of the photoresponse of Aplysia giant neurone: K+ permeability increase. Science 178: 755–756.

    Article  PubMed  CAS  Google Scholar 

  • Burke, W., and B.L. Ginsborg. 1956. The action of the neuromuscular transmitter on the slow fibre membrane. J. Physiol. 132: 599.

    PubMed  CAS  Google Scholar 

  • Calvin, W.H. 1969. Dendritic synapses and reversal potentials: theoretical implications of the view from the soma. Exp. Neurol. 24: 248.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, D.O., M.M. Hovey, and A.F. Bak. 1971. Intracellular conductance of Aplysia neurons and squid axons as determined by a new technique. Intern. J. Neuroscience 2: 35–48.

    Article  CAS  Google Scholar 

  • Chiarandini, D. J., E. Stefani, and H. M. Gerschenfeld. 1967. Ionic mechanisms of cholinergic excitation in molluscan neurons. Science 156: 1957.

    Google Scholar 

  • Chow, S.Y., D.L. Kunze, A.M. Brown, and A.M. Woodbury. 1970. Chloride and potassium activities in luminal fluid of turtle thyroid follicles as determined by ion selective ion-exchanger micro-electrodes. Proc. Natl. Acad. Sci. 67 998–1004.

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall, R.E. 1967. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30: 1263–1287.

    PubMed  CAS  Google Scholar 

  • Cornwall, M.C., D.F. Peterson, D.L. Kunze, J.L. Walker, Jr., and A.M. Brown. 1970. Brain Research 23: 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Crane, J. In press. The mathematics of diffusion. Oxford University Press, London.

    Google Scholar 

  • Eaton, D.C. 1972. Potassium ion accumulation near a pace-making cell of Aplysia. J. Physiol. 224: 421–440.

    PubMed  CAS  Google Scholar 

  • Frazier, W.T., E.R. Kandel, I. Kupferman, R. Waziri, and R.E. Coggeshall. 1967. Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30: 1288.

    Google Scholar 

  • Gerschenfeld, H., and L. Taue. 1961. Pharmacological specificities of neurones in an elementary central nervous system. Nature 189: 924.

    Article  PubMed  CAS  Google Scholar 

  • Hinke, J.A.M. 1959. Cytology and genetics — glass micro-electrodes for measuring intracellular activities of sodium arid potassium. Nature 184: 1257–1258.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., and R.D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. 128: 61–88.

    PubMed  CAS  Google Scholar 

  • Kehoe, J.S., and P. Ascher. 1970. Re-evaluation of the synaptic activation of an electrogenic sodium pump. Nature 225: 280.

    Article  Google Scholar 

  • Kerkut, G.A., and R.W. Meech. 1966. The internal chloride concentration of H and D cells in the snail brain. Comp. Biochem. Physiol. 19: 819.

    Article  CAS  Google Scholar 

  • Kunze, D.L., and A.M. Brown, 1971. Internal potassium and chloride activities and the effects of acetylchloine on identifiable Aplysia neurons. Nature 229: 329–331.

    Google Scholar 

  • Lev, A.A. 1964. Determination of activity and activity coefficients of potassium and sodium ions in frog muscle fibres. Nature 201: 1132–1134.

    Article  PubMed  CAS  Google Scholar 

  • Ling, C., and F.W. Cope. 1969. Potassium ion: Is the bulk of intracellular K adsorbed. Science 163: 1335–1336.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, W.R., and Y. Kanno. 1964. Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability. J. Cell Biology 22: 565–586.

    Article  Google Scholar 

  • Mallart, A., and A. Feltz. 1969. Mise en jeu de permeabilities ioniques distinctes au niveau des recepteurs synaptiques et extrasynaptiques des fibres musculaires striees. C.R. Acad. Sci. 268: 2724.

    CAS  Google Scholar 

  • Orme, Frank. 1969. Liquid ion exchanger microelectrodes in Glass Microelectrodes. Ed. Marc Lavallee, Otto Schanne and Normand Hebert. John Wiley and Sons, New York.

    Google Scholar 

  • Pinsker, H., and E.R. Kandel. 1969. Synaptic activation of an electrogenic sodium pump. Science 163: 931.

    Article  PubMed  CAS  Google Scholar 

  • Rail, W. 1962. Theory of physiological properties of dendrites. Annals N. Y. Acad. Sci. 96: 1071.

    Article  Google Scholar 

  • Russell, J.M., and A.M. Brown. 1972a. Active transport of potassium by the giant neuron of the Aplysia abdominal ganglion. J. Gen. Physiol. 60: 519–533.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J.M., and A.M. Brown. 1972b. Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion. J. Gen. Physiol. 60: 499–518.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., G. Austin, H. Yai, and J. Maruhaski. 1968. The ionic permeability changes during acetylcholine-induced responses of Aplysia ganglion cells. J. Gen. Physiol. 51: 321–345.

    Article  PubMed  CAS  Google Scholar 

  • Sorokina, Z.O. 1966. Activity of sodium and potassium ions in giant neurones of molluscs. Fiziol. Zh. Kiev. 12: 776.

    PubMed  CAS  Google Scholar 

  • Thomas, R.C.1969. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J. Physiol. 201: 495.

    PubMed  CAS  Google Scholar 

  • Walker, J. L., Jr. 1971. Liquid ion exchanger microelectrodes for Ca++, Cl- and K+. In Ion Selective Microelectrodes. N.C. Hebert and R.H. Khuri, eds., Dekker, New York, in press.

    Google Scholar 

  • Walker, J. L., Jr. and A.M. Brown. 1970. Unified account of the variable effects of CO2 on nerve cells. Science 167: 1502.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Brown, A.M., Kunze, D.L. (1974). Ionic Activities in Identifiable Aplysia Neurons. In: Berman, H.J., Hebert, N.C. (eds) Ion-Selective Microelectrodes. Advances in Experimental Medicine and Biology, vol 50. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9023-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9023-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9025-5

  • Online ISBN: 978-1-4615-9023-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics