Skip to main content

Progress toward a Glucose Sensor for the Artificial Pancreas

  • Chapter
Ion-Selective Microelectrodes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 50))

Abstract

The artificial pancreas, actually an artificial beta cell, is a completely implantable device about the size of a cardiac pacemaker that will deliver insulin to the circulatory system, as needed, in response to increases in the glucose level of the blood or other body fluid. The device will contain a glucose sensor, a computer-amplifier system, an insulin pump, a power supply, and an insulin reservoir refillable from the outside by injection at intervals of 3 months or more. The power supply could consist of a nickel-cadmium battery and a recharging circuit activated by electromagnetic induction through the skin. When perfected, the artificial beta cell may prevent the physical deterioration of the diabetic from the stress associated with the imbalance between his actual insulin requirement at any given time and the amount of insulin in usable form in his body at that time. Much of the technology for the artificial pancreas is already available except for a reliable glucose sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, L.C., Jr. and Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci., 102: 29, 1962.

    Article  PubMed  CAS  Google Scholar 

  2. Clark, L.C., Jr. and Sachs, G. Bioelectrodes for tissue metabolism. Ann. N.Y. Acad. Sci., 148:133, 1968.

    Article  PubMed  CAS  Google Scholar 

  3. Clark, L.C., Jr. Monitor and control of blood and tissue oxygen tensions. Trans. Am. Soc. Artificial Internal Organs, 2:41, 1956.

    Google Scholar 

  4. Updike, S.J. and Hicks, G.P. The enzyme electrode. Nature, 214:986, 1967.

    Article  PubMed  CAS  Google Scholar 

  5. Severinghaus, J.W. Measurements of blood gases: PO2 and PCO2. Ann. N.Y. Acad. Sci., 148:115, 1968.

    Article  Google Scholar 

  6. Hicks, G.P. and Updike, S.J. The preparation and characterization of lyophilized Polyacrylamide enzyme gels for chemical analysis. Anal. Chem., 38:726, 1966.

    Article  PubMed  CAS  Google Scholar 

  7. Bessman, S.P. and Schultz, R.D. Prototype glucose-oxygen sensor for the artificial pancreas. Trans. Am. Soc. Artificial Internal Organs, 19:361, 1973.

    Article  CAS  Google Scholar 

  8. Johnson, M.J., Borkowski, J. and Engblom, C. Steam sterili-zable probes for dissolved oxygen measurement. Biotech. Bioengr., 6:457, 1964.

    Article  CAS  Google Scholar 

  9. Borkowski, J.D. and Johnson, M.J. Long-lived steam-sterili-zable probes for dissolved oxygen measurement. Biotech. Bioengr., 9:635, 1967.

    Article  CAS  Google Scholar 

  10. Bessman, S.P. and Schultz, R.D. Stabilized glucose oxidase electrode for monitoring glucose in biological fluids. Digest. Third Int. Congr. Med. Phys. Med. Engrg. (Eds. R. Kadefors, R.I. Magnusson and J. Petersen), Chalmers Univ., Gô’teborg, Sweden, 1972. Art. 30.6.

    Google Scholar 

  11. Bessman, S.P. and Schultz, R.D. Sugar electrode sensor for the “artificial pancreas”. Horm. Metab. Res. 4:413, 1972.

    Article  PubMed  CAS  Google Scholar 

  12. Heyns, K. and Paulsen, H. Selective catalytic oxidations with noble metal catalysts. W. Foerst, Newer Methods of Preparative Organic Chemistry, 2:303, 1963.

    Google Scholar 

  13. Chang, K.W., Aisenberg, S., Soeldner, J.S. and Hiebert, J.M. Validation and bioengineering aspects of an implantable glucose sensor. Trans. Am. Soc. Artificial Internal Organs, 19:352, 1973.

    Article  CAS  Google Scholar 

  14. Wolfson, S.K., Jr., Yao, S.J., Geisel, A. and Cash, H.R., Jr. A single electrolyte fuel cell utilizing permaselective membranes. Trans. Am. Soc. Artificial Internal Organs, 16: 193, 1970.

    CAS  Google Scholar 

  15. Drake, R.F., Kusserow, B.K., Messinger, S. and Matsuda, S. A tissue implantable fuel cell power supply. Trans. Am. Soc. Artificial Internal Organs, 16:199, 1970.

    CAS  Google Scholar 

  16. Personal conversations with J. Stuart Soeldner, April, 1972, and Kuo Wei Chang, August, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Bessman, S.P., Schultz, R.D. (1974). Progress toward a Glucose Sensor for the Artificial Pancreas. In: Berman, H.J., Hebert, N.C. (eds) Ion-Selective Microelectrodes. Advances in Experimental Medicine and Biology, vol 50. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9023-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9023-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9025-5

  • Online ISBN: 978-1-4615-9023-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics