Skip to main content

Perspective: Ion-Selective Microelectrodes: Their Potential in the Study of Living Matter In Vivo

  • Chapter
Ion-Selective Microelectrodes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 50))

Abstract

Work with ion-selective macro- and microelectrodes is rapidly evolving into a new specialty area in biology. The inherent advantages of the approach are basic: it enables one to measure activity of an ionic species directly, as opposed to concentration, and it does this simply, quickly, and in the presence of numerous other components in a complex system, negating the need of first isolating the molecular or ionic species of interest. Interfering species can be compensated for in most cases. Selective microelectrodes have the additional unique potential of making measurements of ionic species possible for the first time in vivo under conditions that approach normalcy, and, in addition, in a continuous manner. Net reactions can therefore be followed in vivo. In contrast, most biochemical measurements today are based on in vitro procedures that are nonphysiologic. Furthermore, they are frequently limited to only one point in time. Undoubtedly piercing a cell with a microelectrode can alter its functional state. But, as has been debated in neuro- and electrophysiology, if the microelectrodes are sufficiently fine and the area entered small with respect to the total cell, then the injury should be negligible and the measured activity should approximate that present in the normal living system.

The Organizers and Participants of the “Workshop on Ion-Selective Microelectrodes” acknowledge with thanks sponsorship by the Microcirculatory Society and Boston University, and support by the National Heart and Lung Institute, Labtron, Microelectrodes, Inc., and the Transidyne General Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum, G. and Ward, F.B., 1971. General enzyme studies with a substrate-selective electrode: characterization of Cholinesterase. Anal. Biochem. 42: 487–493.

    Article  PubMed  CAS  Google Scholar 

  • Buck, R.P., 1972. Ion-Selective Electrodes, Potentiometry, and Potentiometrie Titrations. Anal. Chem. Reviews. 44:270R–285R

    CAS  Google Scholar 

  • Chance, B., Lee, C.P. and Blasie, K.J., Eds., Probes of structure and function of macromo1ecules and membranes. Vol. I. Probes and Membrane Function. (Proc. 5th Colloquium of the Johnson Research Foundation. Apr. 19–21, 1969). Academic Press, N.Y. and London, 1971.

    Google Scholar 

  • Cremer, M., 1906. Uber dreursache der elecktromotorischen Eigenschaf ter der Gewebe, Zugleichein Beitrag zur Lehre von den polyphasischen elektrolytketten. Z.F. Biol. 47:562–608.

    CAS  Google Scholar 

  • Davila, H.V., Salzberg, B.M., and Cohen, L.B., 1973. A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nature. N.B. 241:159–160.

    PubMed  CAS  Google Scholar 

  • Durst, R.A., 1971. Ion-selective electrodes in science, medicine, and technology. American Scientist 59:353–361.

    PubMed  CAS  Google Scholar 

  • Eisenman, G., Rudin, D.O., and Casby, J.U., 1957. Glass electrode for measuring sodium ion. Science 126:831–834.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G., 1969. “Theory of Membrane Electrode Potentials”. Chapter 1 in Ion-Selective Electrodes. R. A. Durst, ed., NBS Spec. Publ. 314, U.S. Gov. Printing Office, Washington, D.C.

    Google Scholar 

  • Eisenman, G., 1962. Cation selective glass electrodes and their mode of operation. Biophys. J. 2 (Part 2): 259–323.

    Article  PubMed  CAS  Google Scholar 

  • Frant, M.S. and Ross, J.W., 1966. Electrode for sensing fluoride ion activity in solution. Science 154: 1553.

    Article  PubMed  CAS  Google Scholar 

  • Frant, M.S. and Ross., 1970. Potassium ion specific electrode with high selectivity for potassium over sodium. Science 167:987–988.

    Article  PubMed  CAS  Google Scholar 

  • Gough, D.A. and Andrade, J.D., 1973. Enzyme electrodes. Science 180: 380–384.

    Article  PubMed  CAS  Google Scholar 

  • Haber, F. and Klemenslewicz., 1909. Über elektrische phasengrenz-krafte. Z.F. physik. Chem. (Leipzig) 67:385–431.

    CAS  Google Scholar 

  • Kneebone, B.N. and Freiser, H., 1973. Determination of nitrogen oxides in ambient air using a coated-wire nitrate selective electrode. Anal. Chem. 45:449–452.

    Article  PubMed  CAS  Google Scholar 

  • Lavallée, M., Schanne, O.F. and Hebert, N.C. 1969. Glass Micro-electrodes. John Widey and Sons, Inc.

    Google Scholar 

  • Liebman, P.A., 1969. Microspectrophotometry of retinal cells. In Data Extraction and Processing of Optical Images in the Medical and Biological Sciences. Annals, N.Y. Acad. Sci. 157:250–264.

    Google Scholar 

  • Llenado, R.A. and Rechnitz, G.A., 1973. Ion-electrode based auto-analysis system for enzymes. Anal. Chem. 45:826–833.

    Article  PubMed  CAS  Google Scholar 

  • Mohan, M.S. and Rechnitz, G.A., 1972. Ion-electrode study of the calcium-adenosine triphosphate system. J. Am. Chem. Soc. 94: 1714–1720.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P., and Rudin, D.O., 1967. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macro-cyclic antibiotics. Biophys. Biochem. Res. Comm. 26:398–404.

    Article  CAS  Google Scholar 

  • Nernst, Walther, 1889. Die elektromotorische Wirksamkeit der Ionen. Z.F. physik Chem. (Leipzig) 4: 129–181.

    Google Scholar 

  • Rechnitz, G.A. and Mohan, M.S., 1970. Potassium-adenosine triphosphate complex: formation constant measured with ion-selective electrodes. Science 168:1460.

    Article  PubMed  CAS  Google Scholar 

  • Ross, J.W., 1969. “Solid-state and liquid membrane ion-selective electrodes”. Chapter 2 in Ion-Selective Electrodes, R.A. Durst, ed., NBS Spec. Publ. 314, U.S. Gov. Printing Office, Washington, D.C.

    Google Scholar 

  • Ross, J.W., Jr. 1967. Calcium-selective electrode with liquid ion exchanger. Science 156:1378–1379.

    Article  PubMed  CAS  Google Scholar 

  • Stefanac, Z. and Simon, W., 1967. Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem. J. 12:125–132.

    Article  CAS  Google Scholar 

  • Wyllie, M.R.J, and Patnode, H.W., 1950. Equations for the multi-ionic potential. J. Phys. Chem. 54:204–227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Berman, H.J. (1974). Perspective: Ion-Selective Microelectrodes: Their Potential in the Study of Living Matter In Vivo . In: Berman, H.J., Hebert, N.C. (eds) Ion-Selective Microelectrodes. Advances in Experimental Medicine and Biology, vol 50. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9023-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9023-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9025-5

  • Online ISBN: 978-1-4615-9023-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics