Skip to main content

Paramagnetic Hyperfine Structure in Iron Complexes with Effective Spin S=l/2

  • Conference paper
Book cover Mössbauer Effect Methodology

Abstract

Several paramagnetic iron compounds with spin S=1/2 are known to exist(1–4) in contrast to the more common high spin iron materials which have spin S=5/2 even though there are five valence electrons associated with the iron ion in each case. These low spin iron compounds can exhibit paramagnetic hyperfine structure (PHS) in Mössbauer spectra under the proper conditions (5) and the shape of the spectrum can provide information about the spin and charge distribution even in randomly oriented absorbers. The low spin situation arises when the energy separation 10Dq between the t2g (or dE) and eg (or dy) states becomes larger than the repulsion between electrons in the same orbital. Then (assuming octahedral coordination) it is energetically favorable for the electrons in the eg states to flip their spins and occupy the t2g orbitals leaving fewer unpaired electrons — hence the “low spin” configuration. We will be discussing those iron materials which have only a single unpaired electron per atom and therefore a net spin of one half.

Supported in part by the National Science Foundation and the Office of Naval Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Welo, Phil. Mag. 6, 481 (1928).

    CAS  Google Scholar 

  2. N. L. Costa, J. Danon, and R. H. Xavier, J. Phys, Chem. Solids 23, 1783 (1962).

    Article  Google Scholar 

  3. B. N. Figgis, J. Chem. Soc. (A) 1966, 422

    Google Scholar 

  4. G. Lang and W. Marshall, Proc. Phys. Soc. (London) 87, 3 (1966).

    Article  CAS  Google Scholar 

  5. W. T. Oosterhuis, G. Lang, and S. DeBenedetti, Physics Letters 26A, 214 (1968).

    Google Scholar 

  6. W. T. Oosterhuis and George Lang, Phys. Rev. 178, 439 (1969). An alternative notation is used in Ref. 4. Appendix B provides a transformation.

    Article  CAS  Google Scholar 

  7. W. T. Oosterhuis and George Lang, J. Chem. Phys. 50, 4381 (1969).

    Article  CAS  Google Scholar 

  8. H. H. Wickman, Mössbauer Effect Methodology, Vol. 2 (Plenum Press 1966).

    Google Scholar 

  9. G. Lang, J. Appl. Physics 38, 915 (1967).

    Article  CAS  Google Scholar 

  10. H. H. Wickman and G. K. Wertheim, Phys. Rev. 148, 211 (1966).

    Article  CAS  Google Scholar 

  11. L. E. Campbell and S. DeBenedetti, Phys. Rev. 167, 556 (1968).

    Article  CAS  Google Scholar 

  12. M. Blume and A. Tjon, Phys. Rev. 165, 446 C1968).

    Google Scholar 

  13. H. Gabriel, Phys. Stat. Solids 23, 195 (1967).

    Article  CAS  Google Scholar 

  14. F. E. Obenshain, L. D. Roberts, C.F. Coleman and D. W. Forester, Phys. Rev. Letters 14,365 (1965).

    Article  CAS  Google Scholar 

  15. C. E. Johnson, Physics Letters 21, 491 (1966), C. E. Johnson, Proc. Phys. Soc. 92,748 (1967).

    Article  CAS  Google Scholar 

  16. H. H. Wickman, and A. M. Trozzolo, Phys. Rev. Letters 15, 156 (1965).

    Article  CAS  Google Scholar 

  17. G. Lang, T. Asakura and T. Yonetoni, Phys. Rev. Letters 24, 981 (1970).

    Article  CAS  Google Scholar 

  18. W. T. Oosterhuis, Phys. Rev. B3, 546 (1971).

    Google Scholar 

  19. George Lang and W. T. Oosterhuis, J. Chem. Phys. 51, 3608 (1969).

    Article  CAS  Google Scholar 

  20. R. E. Watson and A. J. Freeman, Magnetism, Vol. IIA, p. 167(Ed. G. Rado and H. Suhl, Academic Press, 1967).

    Google Scholar 

  21. G. Lang, D. Herbert, and T. Yonetoni, J. Chem. Phys. 49, 944 (1968).

    Article  CAS  Google Scholar 

  22. G, Lang, Quarterly Reviews of Biophysics 3, 1 (1970).

    Article  CAS  Google Scholar 

  23. P. DeBrunner, Spectroscopic Approaches to Biomolecular Conformation, (Ed. D. W. Urrg, American Medical Assn. Press, Chicago, 1969).

    Google Scholar 

  24. G. M. Kalvius, T. E. Katila, O. V. Lounasmaa, Mössbauer Effect Methodology, Volume 5 (Plenum Press 1970).

    Google Scholar 

  25. D. Wood (Private Communication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this paper

Cite this paper

Oosterhuis, W.T. (1971). Paramagnetic Hyperfine Structure in Iron Complexes with Effective Spin S=l/2. In: Gruverman, I.J. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9002-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9002-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9004-0

  • Online ISBN: 978-1-4615-9002-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics