Skip to main content

Comparative Neuroanatomy of Prosimian Primates: Some Basic Concepts Bearing on the Evolution of Upright Locomotion

  • Chapter
Perspectives in Primate Biology

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 9))

Abstract

The mammalian nervous system is composed of (1) nervous elements, which are highly specialized for irritability and conductivity, and (2) supportive non-nervous elements. The nervous elements are called neurons and the supportive elements are the neuroglial cells and a limited amount of connective tissue.

“From a consideration of the details of comparative anatomy of living forms and from the evidence now available from fossil hominoids, it appears reasonably certain (and, indeed, is agreed by authorities who hold widely differing views on a number of phylogenetic details) that the most important single factor in the evolutionary emergence of Hominidae as a separate and independent line of development was related to the specialized functions of erect bipedal locomotion.” Le Gros Clark, 1964

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Albright, B.C. and D. E. Haines. 1973. The morphology of Clarke’s column in the lesser bushbaby (Galago senegalensis). Brain, Behavior, and Evolution, 8: 165–190.

    CAS  Google Scholar 

  2. Angst, R. P. Mann. 1971. Zur Variabilitat von Urogale everetti. Folia primat. 15:148–158.

    Google Scholar 

  3. Ariens Kappers, C., G. C. Huber, and E. C. Crosby. 1936. The Comparative Anatomy of the Nervous System of Vertebrates Including Man. The MacMillan Company, New York.

    Google Scholar 

  4. Ariens Kappers, C. U. 1947. Anatomie Comparée du Systeme Nerveux. Masson and Cie, Paris.

    Google Scholar 

  5. Bischoff, E. 1899. Zur Anatomie der Hinterstrangkerne bei Saugethieren. Jb. Psychiat. Neurol. 18:371–384.

    Google Scholar 

  6. Bossy, J. G., and R. Ferratier. 1968. Studies of the spinal cord of Galago senegalensis, compared to that of man. J. Comp. Neurol., 132:485–498.

    PubMed  CAS  Google Scholar 

  7. Bowsher, D. 1961. The termination of secondary somatosensory neurons within the thalamus of Macaca mulatta: an experimental degeneration study. J. Comp. Neurol. 117:213–227.

    PubMed  CAS  Google Scholar 

  8. Brauer, K. 1968. Vergleichend-anatomische Untersuchungen am Kleinhirn der Insektivoren. 1. Das Kleinhirn von Erinaceus europaeus. J.f. Hirnforsch. 10:89–100.

    CAS  Google Scholar 

  9. Brauer, K. 1969. Vergleichend-anatomische Untersuchungen am Kleinhirn der Insektivoren. II. Das Kleinhirn von Sorex araneus und Elephantulus intufi. J.f. Hirnforsch. 11:537–548.

    Google Scholar 

  10. Brodai, A. 1969. Neurological Anatomy. Oxford University Press. New York.

    Google Scholar 

  11. Buettner-Janusch, J. 1966. Origins of Man. John Wiley and Sons, Inc., New York.

    Google Scholar 

  12. Bugge, J. 1972. The cephalic arterial system in the insectivores and primates with special reference to the Macroselidoidea and Tupaioidea and the Insectivore-Primate boundary. Z. Anat. Entwickl-Gesch. 135:279–300.

    CAS  Google Scholar 

  13. Campbell, C. B. G., D. Yashon, and J. A. Jane. 1966. The origin, course, and termination of the corticospinal fibers in the slow loris, Nycticebus coucang (Boddaert). J. Comp. Neurol. 127:101–112.

    PubMed  CAS  Google Scholar 

  14. Carlsson, A. 1922. Uber die Tupaiidae und ihre Beziehungen zu den Insectivora une den Prosimiae. Acta Zool. 3:227–270.

    Google Scholar 

  15. Carpenter, M. B. 1956. A study of the red nucleus in the rhesus monkey. Anatomic degenerations and physiologic effects resulting from localized lesions of the red nucleus. J. Comp. Neurol. 105:195–249.

    PubMed  CAS  Google Scholar 

  16. Carpenter, M. B., and G. H. Stevens. 1957. Structural and functional relationships between the deep cerebellar nuclei and the brachium conjunctivum in the rhesus monkey. J. Comp. Neur. 107: 109–163.

    PubMed  CAS  Google Scholar 

  17. Carpenter, M. B., G. M. Brittin, and J. Pines. 1958. Isolated lesions of the fastigial nuclei in the cat. J. Comp. Neur. 109: 65–89.

    PubMed  CAS  Google Scholar 

  18. Cartmill, M. 1972. Arboreal adaptations and the origin of the order Primates. In R. Tuttle (ed.), The Functional and Evolutionary Biology of Primates. Aldine-Atherton, Chicago.

    Google Scholar 

  19. Chang, H. T. 1951. Caudal extensions of Clarke’s nucleus in the spider monkey. J. Comp. Neurol. 95:43–71.

    PubMed  CAS  Google Scholar 

  20. Chang, H.-T., and T. C. Ruch. 1947. Organization of the dorsal columns of the spinal cord and their nuclei in the spider monkey. J. Anat. 81:140–149.

    Google Scholar 

  21. Clarke, J. L. 1851. Researches into the structure of the spinal cord. Phil. Trans. Roy. Soc. (London). Part II, 607–621.

    Google Scholar 

  22. Clarke, J. L. 1859. Further researches on the gray substance of the spinal cord. Phil. Trans. Roy. Soc. (London). 149:437–467.

    Google Scholar 

  23. Courville, J. 1966. Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods. Exptl. Brain Res. 2:191–215.

    CAS  Google Scholar 

  24. Crosby, E. C., T. Humphrey, and E. W. Lauer. 1962. Correlative Anatomy of the Nervous System. The MacMillan Company, New York.

    Google Scholar 

  25. Crosby, E. C., A. J. Taren, and R. Davis. 1969. The anterior lobe and the lingula of the cerebellum in monkeys and man. Top. Prol. Psychiat. Neurol. 10:22–39.

    Google Scholar 

  26. Davis, D. D. 1938. Notes on the anatomy of the tree shrew Dendrogale. Zool. Ser. Field Mus. Nat. Hist. 20:383–404.

    Google Scholar 

  27. Eager, R. P. 1963. Efferent cortico-nuclear pathways in the cerebellum of the cat. J. Compt. Neur. 120:81–104.

    Google Scholar 

  28. Eager, R. P. 1966. Patterns and mode of termination of cerebellar cortico-nuclear pathways in the monkey (Macaca mulatta). J. Comp. Neurol. 126:551–566.

    PubMed  CAS  Google Scholar 

  29. Elliot, O. 1971. Bibliography of the tree shrews 1780–1969. Primates 12:323–414.

    Google Scholar 

  30. Ferraro, A., and S. E. Barrera. 1935. Posterior column fibers and their termination in Macacus rhesus. J. Comp. Neurol. 62:507–530.

    Google Scholar 

  31. Fulton, J. F., and D. Sheehan. 1935. The uncrossed lateral pyramidal tract in higher primates. J. Anat. 69:181–187.

    PubMed  CAS  Google Scholar 

  32. Gerhard, L., and J. Olszewski. 1969. Medulla oblongata and pons. In H. Hofer, A. H. Schultz, and D. Starck (Eds.), Primatologica, Handbook of Primatology. Karger, Basel.

    Google Scholar 

  33. Goode, G. E., and D. E. Haines. 1973. Corticospinal fibers in a prosimian primate (Galago senegalensis). Brain Res. 60:477–481.

    PubMed  CAS  Google Scholar 

  34. Goodman, D. C., R. C. Hallet, and R. Welch. 1963. Patterns of localization in the cerebellar cortico-nuclear projections of the albino rat. J. Comp. Neurol. 121:51–67.

    PubMed  CAS  Google Scholar 

  35. Grant, G. 1962. Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta. Physiol. Scand. 56 (Suppl. 193): 1–45.

    CAS  Google Scholar 

  36. Grundfest, H., and B. Campbell. 1942. Origin, conduction and termination of impulses in the dorsal spino-cerebellar tract of cats. J. Neurophysiol. 5:275–294.

    Google Scholar 

  37. Haines, D. E. 1969. The cerebellum of Galago and Tupaia. I. Corpus cerebelli and flocculonodular lobe. Brain, Behavior and Evolution. 2:377–414.

    Google Scholar 

  38. Haines, D. E. 1971a. The cerebellum of Galago II. The early postnatal development. Brain, Behavior and Evolution. 4:97–113.

    Google Scholar 

  39. Haines, D. E. 1971b. The morphology of the cerebellar nuclei of Galago and Tupaia. Amer. J. Phys. Anthrop. 35:27–42.

    CAS  Google Scholar 

  40. Haines, D. E., and D. R. Swindler. 1972. Comparative neuro-anatomical evidence and the taxonomy of the tree shrews (Tupaia). J. Hum. Evol. 1:407–420.

    Google Scholar 

  41. Haines, D. E. 1973. The cerebellum of some Lorisidae. In R. Martin, G. Doyle, and A. Walker (eds.), Prosimian Biology, Duckworth Co., Ltd., London (in press).

    Google Scholar 

  42. Haines, D. E., B. C. Albright, G. E. Goode, and H. M. Murray. 1973. The external morphology of the brain of some Lorisidae. In R. Martin, G. Doyle, and A. Walker (eds.), Prosimian Biology, Duckworth Co. Ltd., London (in press).

    Google Scholar 

  43. Hall-Craggs, E. C. B. 1965. An Osteometrie study of the hind limb of the galagidae. J. Anat. (Lond) 99:119–126.

    CAS  Google Scholar 

  44. Hall-Craggs, E. C. B. 1966. Rotational movements in the foot of Galago senegalensis. Anat. Rec. 154:287–293.

    Google Scholar 

  45. Hatschek, R. 1907. Zur vergleichenden Anatomie der Nucleus Ruber Tegmenti. Arb. Neurol. Inst. Univ. Wien, 15:89–136. Cited by massion, 1967.

    Google Scholar 

  46. Huber, G. C., E. C. Crosby, R. T. Woodburne, L. A. Gillilan, J. O. Brown, and B. Tamthai. 1943. The mammalian midbrain and isthmus regions. I. The nuclear pattern. J. Comp. Neurol. 78:129–534.

    Google Scholar 

  47. Jane, J. A., C. B. G. Campbell, and D. Yashon. 1965. Pyramidal tract: a comparison of two prosimian primates. Science 147: 153–155.

    PubMed  CAS  Google Scholar 

  48. Jane, J. A., C. B. G. Campbell, and D. Yashon. 1969. The origin of the corticospinal tract of the tree shrew (Tupaia glis) with observations on its brain stem and spinal terminations. Brain, Behavior and Evolution 2:160–182.

    Google Scholar 

  49. Jane, J. A., and D. M. Schroeder. 1971. A comparison of dorsal column nuclei and spinal afferents in the European hedgehog (Erinacues europeaus). Exp. Neurol. 30:1–17.

    PubMed  CAS  Google Scholar 

  50. Kanagasuntheram, R., and Z. Y. Mahran. 1960. Observations on the nervous system of the lesser bushbaby (Galago senegalensis senegalensis). J. Anat. 94:512–527.

    PubMed  CAS  Google Scholar 

  51. Kanagasuntheram, R., C. H. Leong, and Z. Y. Mahran. 1966. Observations on some cortical areas of the lesser bushbaby (Galago senegalensis senegalensis). J. Anat. 100:317–333.

    PubMed  CAS  Google Scholar 

  52. Kaufmann, J. H. 1965. Studies on the behavior of captive tree shrews (Tupaia glis). Folia Primat. 3:50–74.

    CAS  Google Scholar 

  53. Keller, A. D. and W. K. Hare. 1934. The rubrospinal tracts in the monkey: effects of experimental section. Arch. Neurol Psychiat. 32:1253–1272.

    Google Scholar 

  54. King, J. A., R. C. Schwyn, and C. A. Fox. 1971. The red nucleus in the monkey (Macaca mulatta): a Golgi and an electron microscopic study. J. Comp. Neurol. 143:75–108.

    Google Scholar 

  55. Kuypers, H.G.J.M., W. R. Fleming, and J. W. Farinholt. 1962. Subcorticospinal projections in the rhesus monkey. J. Comp. Neurol. 118:107–137.

    PubMed  CAS  Google Scholar 

  56. Kuypers, H.G.J.M., and J. Brinkman. 1970. Precentrai projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res. 24:29–48.

    PubMed  CAS  Google Scholar 

  57. Larsell, O., and J. Jansen. 1970. The Comparative Anatomy and Histology of the Cerebellum from Monotremes through Apes. University of Minnesota Press, Minneapolis.

    Google Scholar 

  58. Larseil, O., and J. Jansen. 1972. The Comparative Anatomy and Histology of the Cerebellum. The Human Cerebellum, Cerebellar Connections, and Cerebellar Cortex. University of Minnesota Press. Minneapolis.

    Google Scholar 

  59. Lassek, A. M. 1935. A comparative volumetric study of the gray and white substance of the spinal cord. J. Comp. Neurol. 62 :361–376.

    Google Scholar 

  60. Lawrence, D. G., and H.G.J.M. Kuypers. 1968. The functional organization of the motor system in the monkey. Brain. 91:1–36.

    PubMed  CAS  Google Scholar 

  61. Le Gros Clark, W. E. 1924. On the brain of the tree shrew (Tupaia minor). Proc. Zool. Soc. (London). pp. 1053–1074.

    Google Scholar 

  62. Le Gros Clark, W. E. 1926. The anatomy of the pen-tailed tree shrew (Ptilocercus lowii). Proc. Zool. Soc. (London), pp. 1179–1309.

    Google Scholar 

  63. Le Gros Clark, W. E. 1959. The Antecedents of Man. Edinburgh University Press, Edinburgh.

    Google Scholar 

  64. Le Gros Clark, W. E. 1964. The Fossil Evidence for Human Evolution. University of Chicago Press, Chicago.

    Google Scholar 

  65. Lende, R. A. 1969. A comparative approach to the neocortex: localization in monotremes, marsupials and insectivores. In J. M. Petras and C. R. Noback (Eds.), Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System. Ann. N. Y. Acad. Sci. 167:262–276.

    Google Scholar 

  66. Lende, R. A. 1970. Cortical localization in the tree shrew (Tupaia). Brain Res. 18:61–75.

    PubMed  CAS  Google Scholar 

  67. Liu, C. N., and W. W. Chambers, 1964. An experimental study of the corticospinal system in the monkey (Macaca mulatta). J. Comp. Neurol. 123:257–284.

    PubMed  CAS  Google Scholar 

  68. Lundberg, A., and O. Oscarsson. 1956. Functional organization of the dorsal spinocerebellar tract in the cat. Part IV. Synaptic connections of afferents from Golgi tendon organs and muscle spindles. Acta Physiol. Scand. 38:53–73.

    PubMed  CAS  Google Scholar 

  69. Manni, E. and R. S. Dow. 1963. Some observations on the effects of cerebellectomy in the rat. J. Comp. Neur. 121: 189–194.

    PubMed  CAS  Google Scholar 

  70. Martin, R. D. 1968. Reproduction and ontogeny in tree shrews (Tupaia belangeri) with special reference to their general behavior and taxonomic relationships. Zeit. f. Tierpsy. 25:409–495, 505–532.

    CAS  Google Scholar 

  71. Martin, G. F., and R. Dom. 1970. The rubro-spinal tract of the opossum (Didelphis virginiana). J. Comp. Neurol. 138: 19–30.

    PubMed  CAS  Google Scholar 

  72. Massion, J. 1967. The mammalian red nucleus. Physiol. Rev. 47:383–436.

    PubMed  CAS  Google Scholar 

  73. Mehler, W. R., V. G. Vernier, and W. J. H. Nauta. 1958. Efferent projections from dentate and interposate nuclei in primates. Anat. Rec. 130:430–431.

    Google Scholar 

  74. Mussen, A. T. 1927. Experimental investigations of the cerebellum. Brain 50:313–349.

    Google Scholar 

  75. Napier, J. R. 1967. Evolutionary aspects of primate locomotion. Amer. J. Phys. Anthrop. 27:333–342.

    PubMed  CAS  Google Scholar 

  76. Napier, J. R. and A. C. Walker. 1967. Vertical clinging and leaping — A newly recognized category of locomotor behavior of primates. Folia primat. 6:204–219.

    CAS  Google Scholar 

  77. Noback, C. R., and N. Moskowitz. 1963. The primate nervous system: functional and structural aspects in phylogeny. In J. Buettner-Janusch (Ed.), Evolution and Genetic Biology of Primates, Academic Press, New York. vol. i, pp. 131–177.

    Google Scholar 

  78. Noback, C. R., and J. E. Shriver. 1969. Encephalization and the lemniscal systems during phylogeny. In J. M. Petras and C. R. Noback (Eds.), Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System. Ann. N. Y. Acad. Sci. 167:118–128.

    Google Scholar 

  79. Noback, C. R., and J. K. Harting. 1971. Spinal cord (spinal medulla). In H. Hofer, A. H. Schultz and D. Starck (Eds.), Primatologica, Handbook of Primatology. Karger, Basel.

    Google Scholar 

  80. Orioli, F. L., and F. A. Mettler. 1956. The rubrospinal tract in Macaca mulatta. J. Comp. Neurol. 106:299–318.

    PubMed  CAS  Google Scholar 

  81. Oscarsson, O. 1965. Functional organization of the spino-and cuneocerebellar tracts. Physiol. Rev. 45:495–522.

    PubMed  CAS  Google Scholar 

  82. Pass, I. J. 1933. Anatomic and functional relationships of the nucleus dorsalis. (Clarke’s column). Arch. Neurol. Phychiat. 30:1025–1045.

    Google Scholar 

  83. Petras, J. M. 1969. Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores. In J. M. Petras and C. R. Noback (Eds.), Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System. Ann. N. Y. Acad. Sci. 167:469–505.

    Google Scholar 

  84. Peters, M., and A. A. Monjan. 1971. Behavior after cerebellar lesions in cats and monkeys. Physiol. and Behav. 6:205–206.

    CAS  Google Scholar 

  85. Poirer, L. J., and G. Bouvier. 1966. The red nucleus and its efferent nervous pathways in the monkey. J. Comp. Neurol. 128:223–244.

    Google Scholar 

  86. Pompeiano, O. 1957. Analisi degli effecti della stimulazione elettrica del nucleo rosso nel gatto decerebrato. Atti Accad. Naz. Lincei, Mem. Classe Sci. Fis. Mat. Nat., Sez. III. 22:100–103.

    Google Scholar 

  87. Pompeiano, O., and A. Brodai. 1957. Experimental demonstration of a somatotopical origin of rubrospinal fibers in the cat. J. Comp. Neurol. 108:225–252.

    PubMed  CAS  Google Scholar 

  88. Preuschoft, H. 1971. Mode of locomotion in subfossil giant lemuroids from Madagascar. Proc. 3rd. Int. Congr. Primat. (Zurich 1970) 1:79–90.

    Google Scholar 

  89. Radinsky, L. 1968. A new approach to mammalian cranial analysis, illustrated by examples of prosimian primates. J. Morph. 124:167–180.

    PubMed  CAS  Google Scholar 

  90. Radinsky, L. 1970. The fossil evidence of prosimian brain evolution. In C. Noback (ed.) Advances in Primatology. Vol. 1 The Primate Brain. Appleton-Century-Crofts, New York.

    Google Scholar 

  91. Rand, R. W. 1954. An anatomical and experimental study of the cerebellar nuclei and their efferent pathways in the monkey. J. Comp. Neurol. 101:167–235.

    PubMed  CAS  Google Scholar 

  92. Rexed, B. 1952. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96:415–466.

    Google Scholar 

  93. Romer, A. S. 1969. Vertebrate history with special reference to factors related to cerebellar evolution. In R. R. Llinas (ed.) Neurobiology of Cerebellar Evolution and Development. A M A Education and Research Foundation, Chicago.

    Google Scholar 

  94. Sanides, F., and A. Krishnamurti. 1967. Cytoarchitectonic subdivisions of sensorimotor and prefrontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang). J. Hirnforsch. 9:225–252.

    PubMed  CAS  Google Scholar 

  95. Schoen, J.H.R. 1964. Comparative aspects of the descending fiber systems in the spinal cord. In J. C. Eccles and J. P. Schade (Eds.), Progress in Brain Research, Elsevier, Amsterdam, vol. 11, pp. 203–222.

    Google Scholar 

  96. Schroeder, D. M., and J. A. Jane. 1971. Projection of dorsal column nuclei and spinal cord to brainstem and thalamus in the tree shrew, Tupaia glis. J. Comp. Neurol. 142:309–350.

    PubMed  CAS  Google Scholar 

  97. Schultz, A. H., and W. L. Strauss. 1945. The numbers of vertebrae in primates. Proc. Am. Philos. Soc. 89:601–626.

    PubMed  CAS  Google Scholar 

  98. Shriver, J. E., and C. R. Noback. 1967. Cortical projections to the lower brain stem and spinal cord in the tree shrew (Tupaia glis). J. Comp. Neurol. 130:25–54.

    PubMed  CAS  Google Scholar 

  99. Sorenson, M. W. 1970. Behavior of tree shrews. In L. A. Rosenblum (ed.), Primate Behavior Developments in Field and Laboratory Research. Academic Press, New York.

    Google Scholar 

  100. Stern, J. J. 1971. Functional myology of the hip and thigh of cebid monkeys and its implications for the evolution of erect posture. Bibl. Primat. No. 14 pp. 1–318. Karger.

    Google Scholar 

  101. Stevens, J. L., V. R. Edgerton, and S. Mitton. 1971. Gross anatomy of the hindlimb skeletal system of the Galago senegalensis. Primates 12:313–321.

    Google Scholar 

  102. Stevens, J. L., S. Mitton, and V. R. Edgerton. 1972. Gross anatomy of hindlimb skeletal muscles of the Galago senegalensis. Primates 13:103–109.

    Google Scholar 

  103. Straus, W. L. 1949. The riddle of man’s ancestry. Quart. Rev. Biol. 24:200–223.

    Google Scholar 

  104. Streeter, G. L. 1904. The structure of the spinal cord of the ostrich. Amer. J. Anat. 3:1–27.

    Google Scholar 

  105. Szalay, F. S. 1972. Paleobiology of the earliest primates. In R. Tuttle (ed.), The Functional and Evolutionary Biology of Primates. Aldine-Atherton, Chicago.

    Google Scholar 

  106. Tilney, F. 1927. The brain of Tarsius. A critical comparison with other primates. J. Comp. Neurol. 43:371–432.

    Google Scholar 

  107. Van Valen, L. Tree Shrews, primates, and fossils. Evolution 19:137–151.

    Google Scholar 

  108. Verhaart, W. J. C. 1938. The rubrospinal system with monkeys and man. Folia Psychiat. Neurol. Neuochir. Neerl., 42:335–342. Cited by Massion, 1967.

    Google Scholar 

  109. Verhaart, W. J. C. 1966. The pyramidal tract of Tupaia, compared to that in other primates. J. Comp. Neurol. 126:43–50.

    PubMed  CAS  Google Scholar 

  110. Verma, K. 1965. Notes on the biology and anatomy of the Indian tree-shrew Anathana wroughtoni. Mammalia 29:289–330.

    Google Scholar 

  111. von Monakow, C. 1909. Der rote Kern, die Haube und die regio subthalamica bei einigen Saugetieren und beim Menschen. I. Anatomisches und Experimentelles. Arb. Hirnanat. Inst. Zurich 3:51–267. Cited by Massion 1967.

    Google Scholar 

  112. von Monakow, C. 1910. Der rote Kern der Saugetiere und des Menschen. Neurol. Zentr., 724–727. Cited by Massion 1967.

    Google Scholar 

  113. Wharton, C. H. 1950. Notes on the Philippine tree shrew, Urogale everetti Thomas J. Mamm. 31:352–354.

    Google Scholar 

  114. Woollard, H. H. 1925. Anatomy of Tarsius spectrum. Proc. Zool Soc. (London) Part II. 1071–1185.

    Google Scholar 

  115. Yoss, R. E. 1952. Studies of the spinal cord. Part I. Topographic localization within the dorsal spino-cerebellar tract in Macaca mulatta. J. Comp. Neurol. 97:5–20.

    PubMed  CAS  Google Scholar 

  116. Zervas, N. T. 1969. Paramedial cerebellar nuclear lesions Confin. Neurol. 32:114–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Haines, D.E., Murray, H.M., Albright, B.C., Goode, G.E. (1974). Comparative Neuroanatomy of Prosimian Primates: Some Basic Concepts Bearing on the Evolution of Upright Locomotion. In: Chiarelli, A.B. (eds) Perspectives in Primate Biology. Advances in Behavioral Biology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8990-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8990-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8992-1

  • Online ISBN: 978-1-4615-8990-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics