Skip to main content

Electrical Activity in the Amygdala and its Modification by Drugs. Possible Nature of Synaptic Transmitters. A Review

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 2))

Abstract

This paper is a biased review of the literature pertaining to the peculiarities of the electrical activity of the amygdala, and to its modification by certain chemicals. We have concerned ourselves less with what drugs in general do to the amygdala than with their use as physiological tools, so that we may begin unraveling the complexities of synaptic transmission in this locus of the brain. The reasons for our choice of place are fairly simple; it is there, and it must be of some evolutionary value as it increases in relative volume, while the hippocampus slowly shrinks and recedes into the lateral ventricle. Also, the electrical activity of the amygdala is rather peculiar, and it exhibits some fascinating relationships to overt behavior and neuroendocrine and autonomic mechanisms. It receives a variety of sensory data, and we know very little about the purpose of this convergence. It is certainly a more exciting place for physiologists than the dull striatum so heavily favored these days.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANDEN, N. E., DAHLSTROM, A., FUXE, K., LARSSON, K., OLSON, L., & UNGERSTEDT, U. Ascending monamine neurons to the telencephalon and discencephalon. Acta Physiologica Scandanavia, 1966, 67, 313–326.

    Article  Google Scholar 

  • AXELROD, J., ALBERS, W., & CLEMENTE, C. D. Distribution of catechol-O-methyl transferase in the nervous system and other tissues. Journal of Neurochemistry, 1959, 5, 68–72.

    Article  Google Scholar 

  • BALDWIN, M., LEWIS, S. A., & BACH, S. A. The effects of lysergic acid after cerebral ablation. Neurology (Minn.), 1959, 9, 469–474.

    Article  Google Scholar 

  • BERTLER, A., & ROSENGREN, E. Occurrence and distribution of catecholamines in brain. Acta Physiologica Scandanavia, 1959, 47, 350–361.

    Google Scholar 

  • CORRODI, H., & JONSSON, G. The formaldehyde fluoresence method for the histochemical demonstration of biogenic monoamines. A review of methodology. Journal of Histochemistry and Cytochemistry, 1967, 15, 65–78.

    Article  Google Scholar 

  • DAHLSTROM, A., & FUXE, K. Evidence for the existence of monoamine- containing neurons in the central nervous system. Acta Physiologica Scandanavia, 1964, 62, Supplement, 232.

    Google Scholar 

  • DE JONG, R. H., & WAGMAN, I. H. Cortical and subcortical effects of i.v. lidocaine and inhalation anesthetics. Federal Proceedings, 1963, 22, 187.

    Google Scholar 

  • DELGADO, J. M. R., JOHNSTON, V. S., WALLACE, J. D., & BRADLEY, R. J. Operant conditioning of amygdala spindling in the free chimpanzee. Brain Research, 1970, 22, 347–362.

    Article  Google Scholar 

  • DE ROBERTIS, E. Structural and chemical studies on storage and receptor sites for biogenic amines in the central nervous system. Symposium of the International Society of Cell Biology, 1969, 8, 191–207.

    Google Scholar 

  • EIDELBERG, E., LESSE, H., & GAULT, F. P. An experimental model of temporal lobe epilepsy; studies of the convulsant properties of cocaine. In G. H. Glaser (Ed.) EEG and Behavior. Basic Books, 1963. Pp. 272–283.

    Google Scholar 

  • EIDELBERG, E., & NEER, H. M. Electrical analysis of amygdaloid spindling. Boletin Instituto Estudios Medicos y Biologicos, 1964, 22, 71–84.

    Google Scholar 

  • EIDELBERG, E., NEER, H. M., & MILLER, M. K. Anticonvulsant properties of some benzodiazepine derivatives. Neurology (Minn.), 1965, 15, 223–230.

    Article  Google Scholar 

  • EIDELBERG, E., LONG, M., & MILLER, M. K. Spectrum analysis of EEG changes induced by psychotomimetic agents. International Journal of Neuropharmacology, 1965, 4, 255–264.

    Article  Google Scholar 

  • EIDELBERG, E., MILLER, M. K. & LONG, M. Spectrum analysis of EEG changes induced by some psychoactive agents. Their possible relationship to changes in cerebral biogenic amine levels. International Journal of Neuropharmacology, 1966, 5, 59–74.

    Article  Google Scholar 

  • EIDELBERG, E., DEZA, L., & GOLDSTEIN, G. P. Evidence for serotonin as a possible inhibitory transmitter in some limbic structures. Experimental Brain Research, 1967, 4, 73–80.

    Article  Google Scholar 

  • FREEMAN, W. Distribution in time and space of prepyriform electrical activity. Journal of Neurophysiology, 1959, 22, 644–665.

    Google Scholar 

  • FUXE, K., HOKFELT, T., & UNGERSTEDT, U. Morphological and functional aspects of central monoamine neurons. International Review of Neurobiology, 1970, 13, 93–126.

    Article  Google Scholar 

  • GAULT, F. P., & LEATON, R. N. Electrical activity of the olfactory system. Electroencephalography and Clinical Neurophysiology, 1963, 15, 299–304.

    Article  Google Scholar 

  • GLOOR, P. Amygdala. In Handbook of physiology, Section 1, Neurophysiology, Volume 2. American Physiological Society. Baltimore: Williams and Wilkins, 1960.

    Google Scholar 

  • HERZ, A., & NACIMIENTO, A. C. Über die Wirkung von Pharmaka auf Neurone des Hippocampus nach mikroelektrophoretischer Verabfolgung. Naunyn-Schmiedebergs Archiv für Pharmakologie und Experimintelle Pathologie, 1965, 251, 295–315.

    Google Scholar 

  • KOELLE, G. B. The histochemical localization of cholinesterases in the central nervous system of the rat. Journal of Comparative Neurology, 1954, 100, 211–235.

    Article  Google Scholar 

  • KUNTZMAN, R., SHORE, P. A., BOGDANSKI, D., & BRODIE, B. B. Microanalytical procedures for fluorometric assay of brain DOPA-5HTP decarboxylase, norepinephrine and serotonin and a detailed mapping of decarboxylase activity in brain. Journal of Neurochemistry, 1961, 226–232.

    Google Scholar 

  • LESSE, H. Rhinencephalic electrophysiological activity during “emotional behavior” in cats. Psychiatric Research Report, 1960, 12, 224–237.

    Google Scholar 

  • LESSE, H., HEATH, R. G., MICKLE, W. A., MONROE, R. R., & MILLER, W. H. Rhinencephalic activity during thought. Journal of Nervous and Mental Disorders, 1955, 122, 400–433.

    Google Scholar 

  • LEWIS, P. R., SHUTE, C. C. D., & SILVER, A. Confirmatinn from choline acetylase analyses of a massive cholinergic innervation to the hippocampus. Journal of Physiology (London), 1964, 172, 9–108.

    Google Scholar 

  • MC LEAN, P. D., & DELGADO, J. M. R. Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroencephalography and Clinical Neurophysiology, 1953, 5, 91–100.

    Article  Google Scholar 

  • MC LENNAN, H. Synaptic Transmission. Philadelphia: W. B. Sanders Company, 1963.

    Google Scholar 

  • MOORE, R. Y. Brain lesions and amine metabolism. International Review of Neurobiology, 1970, 13, 67–91.

    Article  Google Scholar 

  • NAUTA, W. J. H. Neural associations of the amygdaloid complex in the monkey. Brain, 1962, 85, 505–520.

    Article  Google Scholar 

  • PAGANO, R. R., & GAULT, F. P. Amygdala activity. A central measure of arousal. Electroencephalography and Clinical Neurophysiology, 1964, 17, 255–260.

    Article  Google Scholar 

  • POHORECKY, L. A., ZIGMOND, M. J., HEIMER, L. & WURTMAN, R. J. Brain norepinephrine: effects of olfactory bulb removal. Federal Proceedings, 1969, 28, 795.

    Google Scholar 

  • SCHWARTZ, A. S., & WHALEN, R. E. Amygdala activity during sexual behavior in the male cat. Life Sciences, 1965, 4, 1359–1366.

    Article  Google Scholar 

  • SNYDER, S. H., KUHAR, M. J., GREEN, A. I., COYLE, J. T., & SHARSKAN, E. E. G. Uptake and subcellular localization of neurotransmitters in the brain. International Review of Neurobiology, 1970, 13, 127–159.

    Article  Google Scholar 

  • STEIN, L., & WISE, C. D. Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine. Journal of Comparative and Physiological Psychology, 1969, 67, 189–198.

    Article  Google Scholar 

  • WOOLLEY, D. W., & CAMPBELL, N. K. Serotonin-like and anti-serotonin properties of psilocybin and psilocin. Science, 1962, 136, 777–778.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Eidelberg, E., Woodbury, C.M. (1972). Electrical Activity in the Amygdala and its Modification by Drugs. Possible Nature of Synaptic Transmitters. A Review. In: The Neurobiology of the Amygdala. Advances in Behavioral Biology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8987-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8987-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8989-1

  • Online ISBN: 978-1-4615-8987-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics