Skip to main content

Preparation of Impermeable Inside-Out and Right-Side-Out Vesicles from Erythrocyte Membranes

  • Chapter
Book cover Methods in Membrane Biology

Abstract

Each biological membrane operates differentially on the two compartments it separates and is thus anisotropic in its function. It is reasonable to suppose that the molecular constituents of the two surfaces differ and that this asymmetry constitutes a principal feature of membrane organization. Since membranes are only a few macromolecules thick, it is clear that enumeration of the components at each surface would do much to define the structure as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

RO:

right-side-out

IO:

inside-out

PBS:

150 mM NaCl-5 mM Na phosphate (pH 8.0)

5P8:

5 mM Na phosphate (pH 8.0)

0.5P8:

0.5 mM Na phosphate (pH 8.0)

AChase:

acetylcholinesterase (acetylcholine hydrolase, E.C. 3.1.1.7)

G3PD:

glyceraldehyde-3-phosphate dehydrogenase (d-glyceraldehyde-3-phosphate

NAD+ :

oxidoreductase [phosphorylating], E.G. 1.2.1.12)

NADH diaphorase:

reduced-NAD: (acceptor) oxidoreductase (E.C. 1.6.99.3)

DTNB:

5,5′-dithiobis-(2-nitrobenzoic acid).

References

  • Albertsson, P.-Å., 1970, Partition of cell particles and macromolecules in polymer two-phase systems, Advan. Protein Chem. 24:309.

    Article  CAS  Google Scholar 

  • Albertsson, P.-Å., 1971, Partition of Cell Particles and Macromolecules, 2nd ed., Wiley-Interscience, New York.

    Google Scholar 

  • Alivisatos, S. G. A., Kashket, S., and Denstedt, O. F., 1956, The metabolism of the erythrocyte. IX. Diphosphopyridine nucleotidase of erythrocytes, Can. J. Biochem. Physiol. 34:46.

    Article  PubMed  CAS  Google Scholar 

  • Avruch, J., Price, H. D., Martin, D. B., and Carter, J. R., 1973, Effect of low levels of trypsin on erythrocyte membranes, Biochim. Biophys. Acta 291:494.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Bassat, I., Bensch, K. G., and Schrier, S. L., 1972, Drug-induced erythrocyte membrane internalization, J. Clin. Invest. 51:1833.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., and Cuatrecasas, P., 1973, Preparation of inverted plasma membrane vesicles from isolated adipocytes, Biochim. Biophys. Acta 311:362.

    Article  PubMed  CAS  Google Scholar 

  • Blanton, P. L., Martin, J., and Haberman, S., 1968, Pinocytotic response of circulating erythrocytes to specific blood grouping antibodies, J. Cell Biol. 37:716.

    Article  PubMed  CAS  Google Scholar 

  • Bodemann, H., and Passow, H., 1972, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membrane Biol 8:1.

    Article  CAS  Google Scholar 

  • Brodie, A. F., Hirata, H., Asano, A., Cohen, N. S., Hinds, T. R., Aithal, H. N., and Kalra, V. K., 1972, The relationship of bacterial membrane orientation to oxidative phosphorylation and active transport, in: Membrane Research (C. F. Fox, ed.), pp. 445–472, Academic Press, New York.

    Google Scholar 

  • Cassidy, J. T., Jourdian, G. W., and Roseman, S., 1965, The sialic acids. VI. Purification and properties of sialidase from Clostridium perfringens, J. Biol. Chem. 240:3501.

    PubMed  CAS  Google Scholar 

  • Cori, G. T., Slein, M. W., and Cori, C. F., 1948, Crystalline d-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, J. Biol Chem. 173:605.

    PubMed  CAS  Google Scholar 

  • Danielli, J. F., 1967, The formation, physical stability, and physiological control of paucimolecular membranes, in: Formation and Fate of Cell Organelles, Symposia of the International Society for Cell Biology, Vol. 6 (K. B. Warren, ed.), pp. 239–253, Academic Press, New York.

    Google Scholar 

  • Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Arch. Biochem. Biophys. 100:119.

    Article  PubMed  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Valentino, A., Jr., and Featherstone, R. M., 1961, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol 7:88.

    Article  PubMed  CAS  Google Scholar 

  • Eylar, E. H., Madoff, M. A., Brody, O. V., and Oncley, J. L., 1962, The contribution of sialic acid to the surface charge of the erythrocyte, J. Biol. Chem. 237:1992.

    PubMed  CAS  Google Scholar 

  • Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10:2606.

    Article  PubMed  CAS  Google Scholar 

  • Firkin, B. G., Beal, R. W., and Mitchell, G., 1963, The effects of trypsin and chymotrypsin on the acetylcholinesterase content of human erythrocytes, Aust. Ann. Med. 12:26.

    PubMed  CAS  Google Scholar 

  • Ginn, F. L., Hochstein, P., and Trump, B. F., 1969, Membrane alterations in hemolysis: Internalization of plasma lemma induced by primaquine. Science 164:843.

    Article  PubMed  CAS  Google Scholar 

  • Glauert, A. M., Daniel, M. R., Lucy, J. A., and Dingle, J. T., 1963, Studies of the mode of action of excess vitamin A. VII. Changes in the fine structure of erythrocytes during haemolysis by vitamin A, J. Cell Biol. 17:111.

    Article  PubMed  CAS  Google Scholar 

  • Guidotti, G., 1972a, Membrane proteins, Ann. Rev. Biochem. 41:731.

    Article  CAS  Google Scholar 

  • Guidotti, G., 1972a. The composition of biological membranes, Arch. Int. Med. 129:194.

    Article  CAS  Google Scholar 

  • Heidrich, H-G., and Leutner, G., 1974, Two types of vesicles from the erythrocyte-ghost membrane differing in surface charge: separation and characterization by preparative free-flow electrophoresis, Eur. J. Biochem. 41:37.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, H., and Brodie, A. F., 1972, Membrane orientation and active transport of proline, Biochem. Biophys. Res. Commun. 47:633.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J. F., 1962, The active transport of sodium by ghosts of human red blood cells, J. Gen. Physiol 45:837.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J. F., 1966, The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41:666.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J. F., Tosteson, D. C., and Whittam, R., 1960, Retention of potassium by human erythrocyte ghosts, Nature 185:186.

    Article  PubMed  CAS  Google Scholar 

  • Holroyde, C. P., and Gardner, F. H., 1970, Acquisition of autophagic vacuoles by human erythrocytes: Physiological role of the spleen, Blood 36:566.

    PubMed  CAS  Google Scholar 

  • Kant, J. A., 1974, A comparative analysis of the distribution of functional components at the two surfaces of the human erythrocyte membrane. Doctoral thesis, Department of Biochemistry, University of Chicago.

    Google Scholar 

  • Kant, J. A., and Steck, T. L., 1972, Cation-impermeable inside-out and right-side-out vesicles from human erythrocyte membranes. Nature New Biol. 240:26.

    PubMed  CAS  Google Scholar 

  • Kant, J. A., and Steck, T. L., 1973a, Specificity in the association of glyceraldehyde 3-phosphate dehydrogenase with isolated human erythrocyte membranes, J. Biol. Chem. 248:8457.

    CAS  Google Scholar 

  • Kant, J. A., and Steck, T. L., 1973b, Adenosine-3′,5′-monophosphate binds only to the inner surface of human erythrocyte membranes, Biochem. Biophys, Res. Commun. 54:116.

    Article  CAS  Google Scholar 

  • Katsumata, Y., and Asai, J., 1972, Ultrastructural changes of erythrocyte ghosts having no connection with hydrolysis of ATP, Arch. Biochem. Biophys. 150:330.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood, D. H., Hudson, R. A., and Brown, R. K., 1972, Recovery of membrane function in erythrocyte ghosts. Fed. Proc. 31:412.

    Google Scholar 

  • Lepke, S., and Passow, H., 1972, The effect of pH at hemolysis on the reconstitution of low cation permeability in human erythrocyte ghosts, Biochim. Biophys. Acta 255:696.

    Article  PubMed  CAS  Google Scholar 

  • Marchesi, V. T., and Palade, G. E., 1967, The localization of Mg-Na-K-activated adenosinetriphosphatase activity on red cell ghost membranes, J. Cell Biol. 35:385.

    Article  PubMed  CAS  Google Scholar 

  • Marchesi, V.T., and Steers, E., Jr., 1968, Selective solubilization of a protein component of the red cell membrane. Science 159:203.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson, G. L., and Singer, S. J., 1971, Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: Application to saccharides bound to cell membranes, Proc. Natl. Acad. Sci. 68:942.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson, G. L., Marchesi, V. T., and Singer, S. J., 1971, The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies, J. Cell Biol. 51:265.

    Article  PubMed  CAS  Google Scholar 

  • Passow, H., 1969, Ion permeability of erythrocyte ghosts, in:Laboratory Techniques in Membrane Biophysics (H. Passow and R. Stämpfli, eds.), pp. 21, Springer-Verlag, New York.

    Google Scholar 

  • Penniston, J. T., 1972, Endocytosis by erythrocyte ghosts: Dependence upon ATP hydrolysis. Arch. Biochem. Biophys. 153:410.

    Article  PubMed  CAS  Google Scholar 

  • Penniston, J. T., and Green, D. E., 1968, The conformational basis of energy transformations in membrane systems. IV. Energized states and pinocytosis in erythrocyte ghosts, Arch. Biochem. Biophys. 128:339.

    Article  PubMed  CAS  Google Scholar 

  • Peronne, J. R., and Blostein, R., 1973, Asymmetric interaction of inside-out and right-side-out erythrocyte membrane vesicles with ouabain, Biochim. Biophys. Acta 291:680.

    Article  Google Scholar 

  • Racker, E., 1970, The two faces of the inner mitochondrial membrane. Essays Biochem. 6:1.

    PubMed  CAS  Google Scholar 

  • Rosenthal, A. S., Kregenow, F. M., and Moses, H. L., 1970, Some characteristics of a Ca2+-dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils, Biochim. Biophys. Acta 196:254.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, C. S., Rosenfeld, R. D., and Rosen, O., 1973, Studies on the orientation of cyclic AMP-dependent protein kinase in human erythrocyte membranes, Proc. Natl. Acad. Sci. 70:3735.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., 1967, Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin, J. Cell Biol. 32:55.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., Cheng, D., and Iles, G. H., 1973, Structure of membrane holes in osmotic and saponin hemolysis, J. Cell Biol. 56:519.

    Article  PubMed  CAS  Google Scholar 

  • Shin, B. C., and Carraway, K. L., 1973, Association of glyceraldehyde 3-phosphate dehydrogenase with the human erythrocyte membrane, J. Biol. Chem. 248:1436.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., 1972, The organization of proteins in human erythrocyte membranes, in: Membrane Research (C. F. Fox, ed.), pp. 71–93, Academic Press, New York.

    Google Scholar 

  • Steck, T. L., and Dawson, G., 1974, Topographical distribution of complex carbohydrates in the erythrocyte membrane, J. Biol. Chem. 249, in press.

    Google Scholar 

  • Steck, T. L., and Kant, J. A., 1974, Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes, in: Methods in Enzymology (Biomembranes Part A), 31, in press.

    Google Scholar 

  • Steck, T. L., and Wallach, D. F. H., 1970, The isolation of plasma membranes, in: Methods in Cancer Research, Vol. 5 (H. Busch, ed.), pp. 93–153, Academic Press, New York.

    Google Scholar 

  • Steck, T. L., and Yu, J., 1973, Selective solubilization of proteins from red blood cell membranes by protein perturbants, J. Supramol. Struct. 1:220.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L., Straus, J. H., and Wallach, D. F. H., 1970a, A model for the behavior of vesicles in density gradients: Implications for fractionation, Biochim. Biophys. Acta 203:385.

    Article  CAS  Google Scholar 

  • Steck, T. L., Weinstein, R. S., Straus, J. H., and Wallach, D. F. H., 1970b, Inside-out red cell membrane vesicles: Preparation and purification. Science 168:255.

    Article  CAS  Google Scholar 

  • Steck, T. L., Fairbanks, G., and Wallach, D. F. H., 1971, Disposition of the major proteins in the isolated erythrocyte membrane: proteolytic dissection. Biochemistry 10:2617.

    Article  PubMed  CAS  Google Scholar 

  • Theodore, J., and Robin, E. D., 1965, The holiness of ghosts, Clin. Res. 13:283.

    Google Scholar 

  • Triplett, R. B., and Carraway, K. L., 1972, Proteolytic digestion of erythrocytes, resealed ghosts, and isolated membranes. Biochemistry 11:2897.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, D. F. H., and Kamat, V. B., 1964, Plasma and cytoplasmic membrane fragments from Ehrlich ascites carcinoma, Proc. Natl. Acad. Sci. 52:721.

    Article  PubMed  CAS  Google Scholar 

  • Warren, L., 1959, The thiobarbituric acid assay of sialic acids, J. Biol. Chem. 234:1971.

    PubMed  CAS  Google Scholar 

  • Weed, R. I., and LaCelle, P. L., 1969, ATP dependence of erythrocyte membrane deformability, in:Red Cell Membrane Structure and Function (G. A. Jamieson and T. J. Greenwalt, eds.), pp. 318–338, Lippincott, Philadelphia.

    Google Scholar 

  • Weiner, M. L., and Lee, K. S., 1972, Active calcium ion uptake by inside-out and right-side-out vesicles of red blood cell membranes, J. Gen. Physiol. 59:462.

    Article  PubMed  CAS  Google Scholar 

  • Whittam, R., 1962, The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport, Biochem. J. 84:110.

    PubMed  CAS  Google Scholar 

  • Yu, J., Fischman, D. A., and Steck, T. L., 1973, Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents, J. Supramol. Struct. 1:233.

    Article  PubMed  CAS  Google Scholar 

  • Zamudio, I., Cellino, M., and Canessa-Fischer, M., 1969, The relation between membrane structure and NADH: (acceptor) oxidoreductase activity of erythrocyte ghosts, Arch. Biochem. Biophys. 129:336.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Steck, T.L. (1974). Preparation of Impermeable Inside-Out and Right-Side-Out Vesicles from Erythrocyte Membranes. In: Korn, E.D. (eds) Methods in Membrane Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8960-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8960-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8962-4

  • Online ISBN: 978-1-4615-8960-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics