Advertisement

Orientational Effects in Heat-Conducting Smectic Liquid Crystals

  • M. N. L. Narasimhan
  • T. E. Kelley

Abstract

The mutually competing orienting influences on heat-conducting smectic liquid crystals of temperature gradients, solid boundaries and shear flows are investigated. The case of Couette flow of smectic liquid crystals between concentric rotating cylinders is treated by solving the governing field equations based on the micropolar continuum theory of A. C. Eringen. Included in the solution of this problem is the derivation of explicit expressions for apparent viscosity coefficient, the orientation and micro-rotation fields, as well as heat-conduction. These expressions lead to a direct and more satisfying comparison with experimental results. The behavior of apparent viscosity under various shear-rates and temperatures as well as its dependence on the gap-width between the cylinders is investigated reaching good agreement with experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Fergason, Sci. Am. 211, No. 2, 77 (1964).CrossRefGoogle Scholar
  2. 2.
    R. A. Champa, “Liquid Cryst. and Ordered Fluids”, 2, 507 (1974) ed., J. F. Johnson and R. S. Porter, Plenum Press, N.Y.CrossRefGoogle Scholar
  3. 3.
    A. Blumstein, Liquid Cryst. and Ordered Fluids, 2, 277 (1974), J. F. Johnson and R. S. Porter, Plenum Press, N.Y.CrossRefGoogle Scholar
  4. 4.
    M. N. L. Narasimhan and A. C. Eringen, Int. J. Eng. Sci., 13, 233 (1975).CrossRefGoogle Scholar
  5. 5.
    M. N. L. Narasimhan and A. C. Eringen, Mol. Cryst. Liquid Cryst., 29, 57 (1974).CrossRefGoogle Scholar
  6. 6.
    M. N. L. Narasimhan, “Continuum Theory of Heat-Conducting Smectic Liquid Crystals”, in Proc. Twelfth Annual meeting, Soc. Eng. Sci., ed. Morris Stern, 61 (1975).Google Scholar
  7. 7.
    M. N. L. Narasimhan and T. E. Kelley, “Liquid Cryst. and Ordered Fluids”, 3 (1977), ed., J. F. Johnson and R. S. Porter Plenum Press, N.Y.Google Scholar
  8. 8.
    A. C. Eringen, Proc. Eleventh International Cong. Appl. Mech., ed., H. Görtier (Springer, Berlin), 131 (1966).Google Scholar
  9. 9.
    R. S. Porter and J. F. Johnson, “Orientation of Nematic Mesophases”, J. Phys. Chem. 66, 1826 (1962).CrossRefGoogle Scholar
  10. 10.
    S. Peter and H. Peters, Zeit. für Physik. Chemie., 3, s103 (1955).CrossRefGoogle Scholar
  11. 11.
    G. Becherer and W. Kast, Ann. Phys. 41, 355 (1942).CrossRefGoogle Scholar
  12. 12.
    M. Miesowicz, Nature, 158, 27 (1946).CrossRefGoogle Scholar
  13. 13.
    B. Tamamushi and M. Matsumoto, “Liquid Cryst. and Ordered Fluids”, 2, 711 (1974), ed., J. F. Johnson and R. S. Porter, Plenum Press, N.Y.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • M. N. L. Narasimhan
    • 1
  • T. E. Kelley
    • 1
  1. 1.Department of MathematicsOregon State UniversityCorvallisUSA

Personalised recommendations