Thermal and Chemical Perturbations of Molecular Order at the Interface and in the Alkyl Chain Region of a Lyotropic Liquid Crystal

  • Robert C. LongJr.
  • J. H. Goldstein


Magnetic field-orientable lyotropic mesophases are useful both as ordering solvents in NMR spectroscopy and as models for membranes and membrane processes. In NMR studies of the latter category, detailed information concerning the behavior of the alkyl chain of the amphiphilic component of the system is obtainable from the quadrupole splittings of the specifically deuterated chain positions (1). Although this is a highly useful and widely applicable approach it is unable to provide the signs of the order parameters in the general case (unless |s|>.5) where the quadrupole splitting is much greater than the direct and indirect couplings (2). We have now measured the 13C shift anisotropies for positions in the alkyl chain for the laurate amphiphile over a range of temperatures. Not only does this eliminate sign ambiguities in the order parameters for the alkyl chain, it also provides a measure of order and its sign for the carboxyl group. The latter information, which is not otherwise available, makes it possible to characterize the situation at the lipid-aqueous interface, an important consideration for model membrane studies. Conventional high-resolution 13 C NMR techniques are not ordinarily suitable for shift anisotropy determination, in ordered systems but the solid-state proton-enhanced cross-polarization methods (3) have been successfully applied to thermotropic systems and lecithin dispersions (4–7).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Long, Jr. and J. H. Goldstein, J. Magn. Resonance, 23, 519 (1976). and references sited therein.Google Scholar
  2. 2.
    J. W. Emsley and J. C. Lindon, “NMR Spectroscopy Using Liquid Crystal Solvents”, Pergamon Press, New York, 1975.Google Scholar
  3. 3.
    A. Pines, M. G. Gibbey and J. S. Waugh, J. Chem. Phys., 59, 569 (1973).CrossRefGoogle Scholar
  4. 4.
    A. Pines, and J. J. Chang, Phys. Rev. A, 10, 946 (1974).CrossRefGoogle Scholar
  5. 5.
    A. Pines, D. J. Ruben and S. Allison, Phys. Rev. Lett., 33. 1002 (1974).CrossRefGoogle Scholar
  6. 6.
    S. J. Opella, J. P. Yerinowski and J. S. Waugh, Proc. Natl. Acad. Sci., 73, 3812 (1976).CrossRefGoogle Scholar
  7. 7.
    Julio Urbina and J. S. Waugh, Proc. Natl. Acad. Sci., 71, 5062 (1974).CrossRefGoogle Scholar
  8. 8.
    R. C. Long, Jr., J. Magn. Resonance, 12, 216 (1973).Google Scholar
  9. 9.
    R. C. Long, Jr. and J. H. Goldstein, in “Liquid Crystals and Ordered Fluids,” Vol. 2 (J. F. Johnson and R. S. Porter, Eds.), Plenum Press, New York, 1974.Google Scholar
  10. 10.
    J. R. Hoyland, J. Amer. Chem. Soc., 90, 2227 (1968).CrossRefGoogle Scholar
  11. 11.
    H. Wennerstrom, G. Linblom and B. Lindman, Chemica Scripta, 6, 97 (1974).Google Scholar
  12. 12.
    G. R. Luckhurst, in “Liquid Crystals and Plastic Crystals,” (ed. G. W. Gray and P. A. Winsor), Vol. 2. Ellis Horwood Publ., Chichester, Chapter 8.Google Scholar
  13. 13.
    J. Charvolin, P. Manneville and B. Deloche, Chem. Phys. Letters, 23, 345 (1973).CrossRefGoogle Scholar
  14. 14.
    A. Henrikson, L. Odberg, and J. C. Eriksson, Mol. Cryst. Liq. Cryst., 30, 73 (1975).CrossRefGoogle Scholar
  15. 15.
    S. Marcelja, Biochem. Biophys. Acta, 367, 165 (1974).CrossRefGoogle Scholar
  16. 16.
    S. Marcelja, J. Chem. Phys., 60, 3599 (1974).CrossRefGoogle Scholar
  17. 17.
    L. W. Reeves and A. S. Tracey, J. Amer. Chem. Soc., 97, 5729 (1975).CrossRefGoogle Scholar
  18. 18.
    J. Seelig and W. Niederberger, Biochemistry, 13, 1585 (1974).CrossRefGoogle Scholar
  19. 19.
    A. Seelig and J. Seelig, Biochemistry, 13, 4839 (1974).CrossRefGoogle Scholar
  20. 20.
    W. Pechhold, Kolloid-2.2. Polym., 228, 1 (1968).CrossRefGoogle Scholar
  21. 21.
    H. Machleidt, S. Roth and P. Seeman, Biochim. Biophys. Acta, 255, 178 (1972).CrossRefGoogle Scholar
  22. 22.
    D. M. Chen, L. W. Reeves, A. S. Tracey and M. M. Tracey, J. Amer. Chem. Soc., 96, 5349 (1974).CrossRefGoogle Scholar
  23. 23.
    R. P. Rand and W. A. Pangborn, Biochim. Biophys. Acta, 318, 299 (1973).CrossRefGoogle Scholar
  24. 24.
    G. W. Stockton, C. F. Polnaszek, A. P. Tulloch, F. Hasan and I. C. P. Smith, Biochemistry, 15, 954 (1976).CrossRefGoogle Scholar
  25. 25.
    V. Luzzati and F. Husson, J. Cell Biol., 12, 207 (1962).CrossRefGoogle Scholar
  26. 26.
    A. Pines, J. J. Chang, and R. G. Griffin, J. Chem. Phys., 61, 1021 (1974).CrossRefGoogle Scholar
  27. 27.
    D. M. Chen, F. Y. Fujiwara, and L. W. Reeves, Can. J. Chem., 55, 2396 (1977) have observed a Type I phase for K laurate (32.7), D2O (65.1), and KC1 (2.2) in percent by weight at 35°C.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Robert C. LongJr.
    • 1
    • 2
  • J. H. Goldstein
    • 1
    • 2
  1. 1.Dept. of MedicineEmory UniversityAtlantaUSA
  2. 2.Dept. of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations