Skip to main content

Theoretical Model for the Phospholipid Bilayer System: Single Component Phase Transition and Binary Mixture Phase Diagram

  • Chapter
Book cover Liquid Crystals and Ordered Fluids

Abstract

An interesting and important problem in statistical mechanics is the phospholipid main phase transition and related phenomena. A phospholipid molecule may be thought of as being composed of a polar head group molecular subunit to which are attached two alkyl chain “tails.”1 In aqueous solution, under conditions of excess water, these molecules are organized into bilayer structures. The bilayer may be viewed as a planar assembly with thickness approximately twice the length of the chain tails (~ 60 Å). The polar head groups are confined to the two planes which define the surface of the bilayer and are in contact with the water on the outside of the bilayer. The hydrophobic alkyl chains are confined to the interior of the bilayer and extend from the polar head group to which they are attached to the plane which is the mid plane of the bilayer. Water is almost totally excluded from the interior of the bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A description of phospholipid bilayers and their properties may be found in D. Chapman, R. M. Williams and D. L. Ladbrooke, Chem. Phys. Lipids 1, 445 (67); D. Chapman Biological Membranes, Vol. 1, D. Chapman editor, (Academic Press, New York, 1968 ).

    Article  Google Scholar 

  2. M. C. Phillips, D. E. Graham, H. Hauser, Nature 254, 154 (75).

    Google Scholar 

  3. E. Shimshick and H. M. McConnell, Biochemistry 12, 2351 (73).

    Google Scholar 

  4. P. B. Hitchcock, R. Mason, K. M. Thomas and G. G. Shipley, Proc. Nat. Acad. Sci (USA) 71, 3036 (74).

    Google Scholar 

  5. P. Bothorel, J. Belle, B. Lemaire, Chemistry and Physics of Lipids 12, 96 (74).

    Google Scholar 

  6. J. F. Nagle, J. Chem. Physics 58, 252 (72); 63, 1255 (75).

    Google Scholar 

  7. S. Marcelja, Biochim. Biophys. Acta 367, 165 (74).

    Google Scholar 

  8. H. L. Scott, J. Theor. Biol. 46, 241 (74); J. Chem. Physics 62, 1347 (75).

    Google Scholar 

  9. S. White, Biophysical Journal 15, 95 (75).

    Google Scholar 

  10. J. A. McCammon and J. M. Deutch, J. Amer. Chem. Soc. 97, 6675 (75).

    Google Scholar 

  11. M. B. Jackson, Biochemistry 15, 2555 (76).

    Google Scholar 

  12. R. G. Priest, J. Chem. Physics 66, 722 (77).

    Google Scholar 

  13. R. E. Jacobs, B. Hudson, H. C. Andersen, Proc. Natl. Acad. Sci. USA 72, 3993 (75).

    Google Scholar 

  14. F. W. Wiegel, Physics Letters 57A, 393 (76); J. Stat. Phys. 13, 515 (75).

    Google Scholar 

  15. P. deGennes, Phys. Lett. A47, 123 (74).

    Google Scholar 

  16. H. Trauble, Biomembranes, F. Kreuzer and J.F.G. Siegers, editors (Plenum, New York, 1972 ) Vol. 3, p. 197.

    Google Scholar 

  17. P. J. Flory, Statistical Mechanics of Chain Molecules, ( Interscience, New York, 1969 ).

    Google Scholar 

  18. S. Mabrey and J. M. Sturtevant, Proc. Natl. Acad. Sci. USA 73, 3862 (76).

    Google Scholar 

  19. B. D. Ladbrooke and D. Chapman, Chem. Phys. Lipids 3, 304 (69).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Priest, R.G., Sheridan, J.P. (1978). Theoretical Model for the Phospholipid Bilayer System: Single Component Phase Transition and Binary Mixture Phase Diagram. In: Johnson, J.F., Porter, R.S. (eds) Liquid Crystals and Ordered Fluids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8888-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8888-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8890-0

  • Online ISBN: 978-1-4615-8888-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics