Formation of the Liquid Crystals of Polyribonucleotide Complexes

  • Eisaku Iizuka
  • Jen Tsi Yang


Double-stranded helices of poly(A) · poly(U), poly(G) · poly (C) and poly(C) · poly(I) and triple-stranded helices of poly(A) · 2poly (U) and poly(A) · 2poly(I) in concentrated solutions form nematic liquid crystals. Poly(C) · poly(I) also contains some spherulitic structures. The molecular assemblies of the two complexes of poly(A) and poly(U) are rod-like and align themselves with their long axes parallel to the direction of orientation. On standing for several weeks these two complexes are converted from the nematic to cholesteric type, which reverses to the oriented nematic crystals under shearing stresses. All the helical complexes show negative linear dichroism and strong negative birefringence. In a magnetic field the pitch of the cholesteric crystals changes with the field strength; this change also varies with the angle that the helicoidal axis of the cholesteric structure makes with respect to the magnetic field. The nematic liquid crystals of the two complexes of poly(A) and poly(U) appear to orient themselves perpendicular to the direction of a magnetic field of more than ten kilogausses.













Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Colby, Jr., Prog. Nucleic Acid Res. Mol. Biol. 11, 1 (1971).Google Scholar
  2. 2.
    E. Iizuka, Adv. Polymer Sci. 20, 79 (1976).CrossRefGoogle Scholar
  3. 3.
    E Iizuka, Y. Kondo and Y. Ukai, Polymer J. 9 135 (1977).CrossRefGoogle Scholar
  4. 4.
    E. Iizuka, Proc. 6th Int. Liq. Cryst. Conf., Part E, Molecular Crystals and Liquid Crystals, in press.Google Scholar
  5. 5.
    E. Iizuka, Polymer J. 9, 173 (1977).CrossRefGoogle Scholar
  6. 6.
    M. B. Rhodes and R. B. Stein, J. Polymer Sci. Part A-2, 7, 1539 (1969).CrossRefGoogle Scholar
  7. 7.
    E. Iizuka, T. Keira and A. Wada, Mol. Cryst. Liq. Cryst. 23, 13 (1973)CrossRefGoogle Scholar
  8. 8.
    E. Iizuka, Biochim. Biophys. Acta 243, 1 (1971).CrossRefGoogle Scholar
  9. 9.
    E. Iizuka, J. Phys. Soc. Japan 34 1054 (1973).CrossRefGoogle Scholar
  10. 10.
    S. F. Mason, J. Chem. Soc. (London) 1240 (1959).Google Scholar
  11. 11.
    S. F. Mason, J. Chem. Soc. (London) 1247 (1959).Google Scholar
  12. 12.
    A. Rich and M. Kasha, J. Am. Chem. Soc. 82, 6197 (1960).CrossRefGoogle Scholar
  13. 13.
    G. B. B. M. Sutherland and M. Tsuboi, Proc. Roy. Soc. (London) A239, 446 (1957).CrossRefGoogle Scholar
  14. 14.
    R. B. Meyer, Appl. Phys. Letters 12, 281 (1968).CrossRefGoogle Scholar
  15. 15.
    P. G. de Gennes, Solid State Commun. 6, 163 (1968).CrossRefGoogle Scholar
  16. 16.
    W. T. Astbury, Symp. Soc. Exp. Biol., I. Nucleic Acid, University Press, Cambridge, 1947, p 66.Google Scholar
  17. 17.
    C. Robinson, Trans. Faraday Soc. 52, 571 (1956).CrossRefGoogle Scholar
  18. 18.
    C. Robinson, Tetrahedron 13, 219 (1961).CrossRefGoogle Scholar
  19. 19.
    S. Sobajima, J. Phys. Soc. Japan 23, 1070 (1967).CrossRefGoogle Scholar
  20. 20.
    G. C. Chen and J. T. Yang, Biophys. Chem. 1, 62 (1973).CrossRefGoogle Scholar
  21. 21.
    P. K. Sarkar and J. T. Yang, J. Biol. Chem. 240, 2088 (1965).Google Scholar
  22. 22.
    P. K. Sarkar and J. T. Yang, Biochemistry 4, 1238 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Eisaku Iizuka
    • 1
    • 2
  • Jen Tsi Yang
    • 1
    • 2
  1. 1.Institute of High Polymer ResearchShinshu UniversityUeda 386Japan
  2. 2.Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations