Domains due to Electric and Magnetic Fields in Bulk Samples of Liquid Crystals

  • E. F. Carr


Domains are created by electric or magnetic fields in bulk samples initially well aligned. The fields are applied perpendicular to the nematic director, and domains form which appear to be separated by walls. The possibility of inversion walls are considered. When applying electric fields (conduction regime) the space-charge density should be a maximum at the walls because of the conductivity anisotropy. The forces, due to the interaction of the electric field with the space-charge at the walls, tend to shear the sample. Because of shear flow, the director associated with the sample between the walls is turned toward the electric field. This mechanism is also likely to be involved in the dynamic scattering mode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Williams, J. Chem. Phys. 39, 384 (1963).CrossRefGoogle Scholar
  2. 2.
    W. Helfrich, J. Chem. Phys. 51, 4092 (1969),CrossRefGoogle Scholar
  3. 3.
    E.F. Carr, Mol. Cryst. and Liq. Cryst. 7, 253 (1969).Google Scholar
  4. 4.
    G. Durand, M. Veyssie, F. Rendelez, and W. Leger, C.R. Acad. Sci. B 270, 97 (1970).Google Scholar
  5. 5.
    P.A. Penz, Phys. Rev. Lett. 24, 1405 (1970)CrossRefGoogle Scholar
  6. 6.
    E.F. Carr, P.H. Ackroyd and J.K. Newell, Mol. Cryst. and Liq. Cryst. (to be published).Google Scholar
  7. 7.
    W. Helfrich, Phys. Rev. Lett. 21, 1518 (1968).CrossRefGoogle Scholar
  8. 8.
    E.F. Carr, Mol. Cryst. and Liq. Cryst. 34, 159 (1977).CrossRefGoogle Scholar
  9. 9.
    P.G. deGennes, The Physics of Liquid Crystals, Clarendon Press, Oxford (1974).Google Scholar
  10. 10.
    F.M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968); Ch. Gahwiller, Mol. Cryst. and Liq. Cryst. 20, 301 (1973) and Phys. Rev. Lett. 28, 1554 (1972); S. Meiboom and R.C. Hewitt, Phys. Rev. Lett, 30, 261 (1973); P. Pieranski and E. Guyon Phys. Rev. Lett. 32, 924 (1974).CrossRefGoogle Scholar
  11. 11.
    J.H. Parker, Thesis, University of Maine (1971); T.E. Kubaska, C.E. Tarr, and T.B. Triop, Mol. Cryst. Liq. Cryst. 29, 155 (1974); J.C. Rowel 1, W.D. Phillips, L.R. Mel by, and M. Panar, J. Chem. Phys. 43, 3442 (1965); E. Gelerinter, A.L. Berman, G.A. Fryburg, and S.L. Golub, Phys. Rev. A9, 2099 (1974); G.R. Luckhurst, Chem. Phys. Lett., 9, 289 (1971); M. Schara and M. Sentjurc, Solid St. Commun., 8, 593 (1970).Google Scholar
  12. 12.
    R.W.H. Kozlowski and E.F. Carr, unpublished results.Google Scholar
  13. 13.
    S. Kai, K. Yamaguchi and K. Hirakawa, J. Phys. Soc. (Japan) 40, 267 (1976).Google Scholar
  14. 14.
    G.H. Heilmeier, L.A. Zanoni and L.A. Barton, Proc. IEEE 56, 1162 (1968).CrossRefGoogle Scholar
  15. 15.
    E.J. Sinclair and E.F. Carr, Mol. Cryst. and Liq. Cryst. 37, 303 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • E. F. Carr
    • 1
  1. 1.Physics DepartmentUniversity of MaineOronoUSA

Personalised recommendations