Raman Spectroscopic and Calorimetric Investigation of the Multiple Smectic Phase Material TBBA

  • J. M. Schnur
  • J. P. Sheridan


Smectic mesophase formation and structure have been the subject of vigorous scientific inquiry in recent years. 1–6 Among those phases investigated most intensively, the B and H phases are thought to possess the highest degree of local three-dimensional order. As determined by X-ray crystallography 1–5 both phases exhibit long-range two dimensional pseudo-hexagonal order within each layer; in addition there appears to be some degree of correlation between planes.1,5 In the H phase the director lies at an angle to the smectic planes, while in the B phase it is normal to the planes. The nature of the degrees of freedom available and the intermolecular ordering in these phases has been the subject of a number of theoretical and experimental studies.3,7,8 Since terephthal-bis-butylaniline (TBBA) exhibits a smectic H phase as well as at least eight other phases (see schematic below), it has been extensively studied by various experimental techniques including X-ray,4 NMR,9 DSC,10 neutron scattering,11 infrared12 and Raman10,13–14 spectroscopy. This paper provides new information on the nature of the various smectic phases observed in TBBA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Levelut and M. Lambert, C. R. Acad. Sci. (Paris) 272, 1018 (1971).Google Scholar
  2. 2.
    A. de Vries and D. L. Fishel, Mol. Cryst. 16, 211 (1972).CrossRefGoogle Scholar
  3. 3.
    J. Doucet, A. M. Levelut, and M. Lambert, Phys. Rev. Lett. 32, 201 (1974).CrossRefGoogle Scholar
  4. 4.
    A. de Vries, Chem. Phys. Lett. 28, 252 (1974).CrossRefGoogle Scholar
  5. 5.
    J. Doucet, A. M. Levelut, M. Lambert, L. Liebert, and L. Strzelecke, J. de Phys. 36, Supp. 3 (1975).Google Scholar
  6. 6.
    J. Billard, C. R. Hebd, Seances Acad. Sci. (Paris) B280, 573 (1975).Google Scholar
  7. 7.
    R. J. Meyer and W. L. McMillan, Phys. Rev. 59, 899 (1974).CrossRefGoogle Scholar
  8. 8.
    R. J. Meyer, Phys. Rev. A12, 1066 (1975).CrossRefGoogle Scholar
  9. 9.
    Z. Luz and S. Meiboom, J. Chem Phys. 59, 275 (1973).CrossRefGoogle Scholar
  10. 10.
    J. Schnur, J. P. Sheridan and M. Fontana, Int. Liq. Cryst. Conf. Bangalore (1973); Pramana Sup. #1, P. 175 (1975).Google Scholar
  11. 11.
    H. Hervet, F. Volino, A. J. Dianoux, and R. E. Lechner, J. de Phys. L35, 151 (1974).Google Scholar
  12. 12.
    S. Venugopalan et al. Mol. Crystl and Liq. Cryst. 40, 149–161 (1977).CrossRefGoogle Scholar
  13. 13.
    J. M. Schnur and M. Fontana, J. de Phys. L35, 53 (1975).Google Scholar
  14. 14.
    D. Dvorjetski, V. Volterra and E. Wiener-Avnear, Phys. Rev. A 12, 681 (1975).CrossRefGoogle Scholar
  15. 15.
    J. M. Schnur, Mol. Cryst. Liquid Cryst. 23, 155 (1973).CrossRefGoogle Scholar
  16. 16.
    B. J. Bulkin and F. T. Prochaska, J. Chem. Phys. 54, 635 (1971).CrossRefGoogle Scholar
  17. 17.
    S. J. Borer, S. S. Mitra and C. W. Brown, Phys. Rev. Lett. 27, 379 (1971).CrossRefGoogle Scholar
  18. 18.
    R. F. Schaufele, J. Chem. Phys. 49, 4168 (1968).CrossRefGoogle Scholar
  19. 19.
    F. Behroozi, R. Priest, and J. Schnur, J. Raman Spectroscopy 4, 379 (1976).CrossRefGoogle Scholar
  20. 20.
    J. M. Schnur, Phys. Rev. Lett. 29, 1141 (1971).CrossRefGoogle Scholar
  21. 21.
    G. Vergoten, Dissertation, University of Lille (1973).Google Scholar
  22. 22.
    M. Fontana and S. Bini, Phys. Rev. A 14, 1555 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. M. Schnur
    • 1
  • J. P. Sheridan
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations