Skip to main content

Concerted Reactions

  • Chapter
Advanced Organic Chemistry

Abstract

There are many reactions in organic chemistry that give no evidence of involving intermediates when they are subjected to the usual probes employed for studying reaction mechanisms. Charged intermediates do not appear to be involved, since the rates of such reactions are insensitive to solvent polarity, and catalysis by acids or bases is rarely observed. Efforts to detect free-radical intermediates by physical or chemical means have not been successful, and the reaction rates are neither increased by initiators nor decreased by free-radical inhibitors. This lack of evidence of intermediates leads to the conclusion that the reactions are concerted processes in which bond-making and bond-breaking both contribute to the structure of the transition state, although not necessarily to the same degree. There are numerous examples of both unimolecular and bimolecular concerted processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. D. H. Hunter and S. K. Sim, J. Am. Chem. Soc. 91, 6202 (1969).

    Article  CAS  Google Scholar 

  2. K. B. Wiberg, V. Z. Williams, Jr., and L. E. Friedrich, J. Am. Chem. Soc. 90, 5338 (1968).

    Article  CAS  Google Scholar 

  3. P. S. Skell and S. R. Sandler, J. Am. Chem. Soc. 80, 2024 (1958).

    Article  CAS  Google Scholar 

  4. E. Vogel, Justus Liebigs Ann. Chem. 615, 14 (1958).

    Article  CAS  Google Scholar 

  5. A. C. Cope, A. C. Haven, Jr., F. L. Ramp, and E. R. Trumbull, J. Am. Chem. Soc. 74, 4867 (1952).

    Article  CAS  Google Scholar 

  6. R. Pettit, J. Am. Chem. Soc. 82, 1972 (1960).

    Article  CAS  Google Scholar 

  7. P. S. Wharton and R. A. Kretchmer, J. Org. Chem. 33, 4258 (1968).

    Article  CAS  Google Scholar 

  8. A. G. Anastassiou, V. Orfanos, and J. H. Gebrian, Tetrahedron Lett., 4491 (1969)

    Google Scholar 

  9. P. Radlick and G. Alford, J. Am. Chem. Soc. 91, 6529 (1969).

    Article  CAS  Google Scholar 

  10. L. A. Paquette and M. Oku, J. Am. Chem. Soc. 96, 1219 (1974).

    Article  CAS  Google Scholar 

  11. A. E. Hill, G. Greenwood, and H. M. R. Hoffmann, J. Am. Chem. Soc. 95, 1338 (1973).

    Article  CAS  Google Scholar 

  12. S. W. Staley and T. J. Henry, J. Am. Chem. Soc. 93, 1292 (1971).

    Article  CAS  Google Scholar 

  13. T. Kauffmann and E. Köppelmann, Angew. Chem. Int. Ed. Engl. 11, 290 (1972).

    Article  CAS  Google Scholar 

  14. L. A. Paquette and R. S. Beckley, J. Am. Chem. Soc. 97, 1084 (1975).

    Article  CAS  Google Scholar 

  15. R. Huisgen and W. E. Konz, J. Am. Chem. Soc. 92, 4102 (1970).

    Article  CAS  Google Scholar 

  16. S. V. Ley and L. A. Paquette, J. Am. Chem. Soc. 96, 6670 (1974).

    Article  CAS  Google Scholar 

  17. P. Radlick and W. Fenical, Tetrahedron Lett., 4901 (1967).

    Google Scholar 

  18. R. K. Hill, J. W. Morgan, R. V. Shetty, and M. E. Synerholm, J. Am. Chem. Soc. 96, 4201 (1974)

    Article  CAS  Google Scholar 

  19. H. M. R. Hoffmann, Angew. Chem. Int. Ed. Engl. 8, 556 (1969).

    Article  CAS  Google Scholar 

  20. R. Noyori, N. Hayashi, and M. Katô, J. Am. Chem. Soc. 93, 4948 (1971).

    Article  CAS  Google Scholar 

  21. W. E. Billups, K. H. Leavell, E. S. Lewis, and S. Vanderpool, J. Am. Chem. Soc. 95, 8096 (1973).

    Article  CAS  Google Scholar 

  22. W. Grimme, H. J. Riebel, and E. Vogel, Angew. Chem. Int. Ed. Engl. 7, 823 (1968).

    Article  CAS  Google Scholar 

  23. A. K. Cheng, F. A. L. Anet, J. Mioduski, and J. Meinwald, J. Amer. Chem. Soc. 96, 2887 (1974).

    Article  CAS  Google Scholar 

  24. J. S. McKennis, L. Brener, J. S. Ward, and R. Pettit, J. Am. Chem. Soc. 93, 4957 (1971).

    Article  Google Scholar 

  25. W. Grimme, H. J. Riebel, and E. Vogel, Angew. Chem. Int. Ed. Engl. 7, 823 (1968).

    Article  CAS  Google Scholar 

  26. W. Grimme, J. Am. Chem. Soc. 94, 2525 (1972).

    Article  CAS  Google Scholar 

  27. J. J. Gajewski, L. K. Hoffman, and C. N. Shih, J. Am. Chem. Soc. 96, 3705 (1974).

    Article  CAS  Google Scholar 

  28. R. P. Lutz and J. D. Roberts, J. Am. Chem. Soc. 83, 2198 (1961).

    Article  CAS  Google Scholar 

  29. L. A. Feiler, R. Huisgen, and P. Kopitz, J. Am. Chem. Soc. 96, 2270 (1974).

    Article  CAS  Google Scholar 

  30. L. A. Paquette, and M. J. Wyvratt, J. Am. Chem. Soc. 96, 4671 (1974)

    Article  CAS  Google Scholar 

  31. D. McNeil, B. R. Vogt, J. J. Sudol, S. Theodoropulos, and E. Hedaya, J. Am. Chem. Soc. 96, 4673 (1974).

    Article  CAS  Google Scholar 

  32. D. Belluš, H.-C. Mez, G. Rihs, and H. Sauter, J. Am. Chem. Soc. 96, 5007 (1974).

    Article  Google Scholar 

  33. W. Grimme, J. Am. Chem. Soc. 95, 2381 (1973).

    Article  CAS  Google Scholar 

  34. W. Weyler, Jr., L. R. Byrd, M. C. Caserio, and H. W. Moore, J. Am. Chem. Soc. 94, 1027 (1972).

    Article  CAS  Google Scholar 

  35. M. Newcomb and W. T. Ford, J. Am. Chem. Soc. 95, 7186 (1973).

    Article  CAS  Google Scholar 

  36. A. Viola and L. Levasseur, J. Am. Chem. Soc. 87, 1150 (1965).

    Article  CAS  Google Scholar 

  37. S. F. Reed, Jr., J. Org. Chem. 30, 1663 (1965).

    Article  CAS  Google Scholar 

  38. T. S. Cantrell and H. Shechter, J. Am. Chem. Soc. 89, 5868 (1967).

    Article  CAS  Google Scholar 

  39. R. B. Woodward, R. E. Lehr, and H. H. Inhoffen, Justus Liebigs Ann. Chem. 714, 57 (1968).

    Article  CAS  Google Scholar 

  40. R. B. Woodward and T. J. Katz, Tetrahedron 5, 70 (1959).

    Article  CAS  Google Scholar 

  41. N. J. Turro and W. B. Hammond, Tetrahedron 24, 6029 (1968).

    Article  CAS  Google Scholar 

  42. J. S. McConaghy, Jr., and J. J. Bloomfield, Tetrahedron Lett., 3719 (1969).

    Google Scholar 

  43. W. J. Linn and R. E. Benson, J. Am. Chem. Soc. 87, 3657 (1965).

    Article  Google Scholar 

  44. J. K. Crandall and W. H. Machleder, J. Am. Chem. Soc. 90, 7292 (1968).

    Article  CAS  Google Scholar 

  45. M. Jones, Jr., S. D. Reich, and L. T. Scott, J. Am. Chem. Soc. 92, 3118 (1970).

    Article  CAS  Google Scholar 

  46. M. Jones, Jr., and B. Fairless, Tetrahedron Lett., 4881 (1968)

    Google Scholar 

  47. R. T. Seidner, N. Nakatsuka, and S. Masamune, Can. J. Chem. 48, 187 (1970).

    Article  CAS  Google Scholar 

  48. H.-D. Martin and E. Eisenmann, Tetrahedron Lett., 661 (1975).

    Google Scholar 

  49. W. E. Billups, B. A. Baker, W. Y. Chow, K. H. Leavell, and E. S. Lewis, J. Org. Chem. 40, 1702 (1975).

    Article  CAS  Google Scholar 

  50. P. B. Valkovich, J. L. Conger, F. A. Castiello, T. D. Brodie, and W. P. Weber, J. Am. Chem. Soc. 97, 901 (1975).

    Article  CAS  Google Scholar 

  51. R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press, New York, 1970.

    Google Scholar 

  52. M. J. S. Dewar, “Aromaticity and pericyclic reactions,” Angew. Chem. Int. Ed. Engl. 10, 761 (1971).

    Article  CAS  Google Scholar 

  53. M. J. S. Dewar, “Aromaticity and pericyclic reactions,” Angew. Chem. Int. Ed. Engl. 10, 761 (1971).

    Article  CAS  Google Scholar 

  54. H. E. Zimmerman, “The Möbius-Hückel concept in organic chemistry: Application to organic molecules and reactions,” Acc. Chem. Res. 4, 272 (1971).

    Article  CAS  Google Scholar 

  55. W. C. Herndon, “The theory of cycloaddition reactions,” Chem. Rev. 72, 157 (1972).

    Article  CAS  Google Scholar 

  56. S. J. Rhoads and N. R. Raulins, “The Claisen and Cope rearrangements,” Org. React. 22, 1 (1974).

    Google Scholar 

  57. K. N. Houk, “The frontier molecular orbital theory of cycloaddition reactions,” Acc. Chem. Res. 11, 361 (1975).

    Article  Google Scholar 

  58. R. E. Lehr and A. P. Marchand, Orbital Symmetry, A Problem-Solving Approach, Academic Press, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Carey, F.A., Sundberg, R.J. (1977). Concerted Reactions. In: Advanced Organic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8882-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8882-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8884-9

  • Online ISBN: 978-1-4615-8882-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics