Skip to main content

The Composition and Metabolism of Microsomal and Mitochondrial Membrane Lipids in the Morris 7777 Hepatoma

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 92))

Summary

Mitochondria and microsomes isolated from the Morris 7777 hepatoma demonstrated a markedly different phospholipid composition from the control organelle both with respect to the types present and the fatty acid composition. Hepatoma mitochondria contained lower amounts of cardiolipin than control liver (3.7% versus 5.2%). Some compensation in the amount of acidic phospholipids in the hepatoma mitochondria was made by an increase in phosphatidylserine (4.9% versus 1.3%). The major difference in microsomal phospholipids was an increase in the hepatoma sphingomyelin content. The level of polyunsaturated fatty acids in both hepatoma organelles was lowered, concomitant with an increase in the level of monoun-saturated fatty acid. Moreover, the usual distribution of saturated fatty acids at position 1 and polyunsaturated fatty acids at position 2 was not observed in hepatoma mitochondrial phospholipids. Force-area curves of the hepatoma phospholipids spread on a mono-molecular film demonstrated a smaller area per molecule than those from control liver mitochondria. The zeta potential of liposomes of the hepatoma mitochondria phospholipids (−45) was less than that of control mitochondria (−81) as determined by microelectrophoresis. In studies of phosphoglyceride metabolism, the calcium-stimulated phospholipase A activity of the hepatoma mitochondria appeared to be more readily expressed than the same activity in the liver organelle. The maximal activity was lower, however, than that in liver mitochondria. Hepatoma microsomes incorporated free fatty acids into monoacyl phospholipids, in the presence of an acyl-CoA generating system, to a lesser degree than liver microsomes. Additionally, frozen and thawed microsomes from the hepatoma 7777 had little capacity to incorporate free fatty acids, whereas, such treatment had no effect on liver microsomes. These results indicate that the fatty acid activating enzyme of hepatoma microsomes is more labile than that of liver. Both microsomal samples had phospholipase(s) which were active on membrane phospholipids, yet the hepatoma microsomes demonstrated no accumulation of the monoacylphos-phoglyceride product, unlike liver where one half of the product accumulated. This indicates that the precursor for reacylation in the Lands’ cycle is decreased in the hepatoma. The hepatoma stearoyl-CoA desaturate activity was elevated with respect to the liver microsomal enzyme. Moreover, the 6△desaturase was significantly decreased in hepatoma. We conclude from these results that the alterations in hepatoma phospholipid composition, both quantitatively and qualitatively, may be accounted for, in part, by the metabolic aberrations described here.

Supported by USPH Grants CA 14318 and CA 10729, and by the Forsyth Cancer Service.

Recipient of NIH Career Development Award AM 17392.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercombie, H.N. and Heaysman, J.E.M. Exp. Cell Res. 6 (1954) 293.

    Article  Google Scholar 

  2. Bergelson, L.D. and Dyatlovitskaya, E.V. In: Tumor Lipids: Biochemistry and Metabolism, R. Wood (ed). (1973) 111.

    Google Scholar 

  3. Bergelson, L.D., Dyatlovistkaya, E.V., Sorokina, I.B. and Gorkova, N.P. BBA 360 (1974) 361.

    Article  PubMed  CAS  Google Scholar 

  4. Bergelson, L.D., Dyatlovitskaya, E.V., Torkhovskaya, T.I., Sorokina, I.B. and Gorkova, N.P. BBA, 210 (1970) 287.

    Article  PubMed  CAS  Google Scholar 

  5. Bruni, A., van Dijck, P.W.M. and DeGier, J. BBA, 406 (1975) 315.

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham, C.C. and George, D.T. JBC, 250 (1975) 2036.

    CAS  Google Scholar 

  7. Demel, R.A., van Deenen, L.L.M. and Pethica, B.A. BBA 135 (1967) 11.

    Article  CAS  Google Scholar 

  8. Dyatlovitskaya, E.V., Yanchevskaya, G.V. and Bergelson, L.D. Chem. Phys. Lipids 12 (1974) 132.

    Article  PubMed  CAS  Google Scholar 

  9. Farias, R.N., Bloj, B., Morero, R.D., Sineriz, F. and Trucco, R.E., BBA 415 (1975) 231.

    Article  PubMed  CAS  Google Scholar 

  10. Gazzotti, P., Bock, H., and Fleischer, S. JBC, 250 (1975) 5782.

    CAS  Google Scholar 

  11. Griffiths, J.B. J. Cell Sci. 10 (1972) 515.

    PubMed  CAS  Google Scholar 

  12. Harvey, M.S., Wirtz, K.W.A., Kamp, H.H., Zegers, B.J.M. and van Deenen, L.L.M. BBA 323 (1973) 234.

    Article  PubMed  CAS  Google Scholar 

  13. Hill, E.E. and Lands, W.E.M. In: Lipid Metabolism, S.J. Wakil (ed)., (1970) 185.

    Google Scholar 

  14. Horwitz, A.F., Hatten, M.E. and Burger, M.M. PNAS 71 (1974) 3115.

    Article  PubMed  CAS  Google Scholar 

  15. Hostetler, K.Y., van den Bosch, H. and van Deenen, L.L.M. BBA, 239 (1971) 113.

    Article  PubMed  CAS  Google Scholar 

  16. Hostetler, K.Y., Zenner, B.D. and Morris, H.P. BBA 441 (1976) 231.

    Article  PubMed  CAS  Google Scholar 

  17. Inbar, M. and Sachs, L. PNAS, 63 (1969) 1418.

    Article  PubMed  CAS  Google Scholar 

  18. Kagawa, Y., Kandrach, A. and Racker, E. JBC, 248 (1973) 676.

    CAS  Google Scholar 

  19. Kimelberg, H.K. and Papahadjopoulos, D. BBA, 282 (1972) 277.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, T.C., Stephens, N. and Snyder, F. Cancer Res. 34 (1974) 3270.

    PubMed  CAS  Google Scholar 

  21. Levey, G.S. and Klein, I. J. Clin. Invest. 51 (1972) 1578.

    Article  PubMed  CAS  Google Scholar 

  22. Limbrid, L.E. and Lefkowitz, R.J. Mol. Phar. 12 (1976) 559.

    Google Scholar 

  23. Litman, B.J. Biochemistry, 13 (1974) 2844.

    Article  PubMed  CAS  Google Scholar 

  24. Lumb, R. and Allen, K.F. BBA 450 (1976) 175.

    Article  PubMed  CAS  Google Scholar 

  25. McMurry, W.C. and Magee, W.L. Ann. Rev. Biochem. 41 (1972) 129.

    Article  Google Scholar 

  26. Morton, R., Cunningham, C., Jester, R., Waite, M., Miller, N. and Morris, H.P., Cancer Res. 36 (1976) 3246.

    PubMed  CAS  Google Scholar 

  27. Nicolson, G.L. BBA, 458 (1976) 1.

    PubMed  CAS  Google Scholar 

  28. Papahadjopoulos, D., Nir, S. and Ohki, S. BBA, 266 (1971) 561.

    Article  Google Scholar 

  29. Peery, C.V., Johnson, G.S. and Pastan, I. JBC, 246 (1971) 5785.

    CAS  Google Scholar 

  30. Reitz, R.C., Thompson, J.A. and Morris, H.P. Cancer Res. 37 (1977) 561.

    PubMed  CAS  Google Scholar 

  31. Rittenhouse, H.G., Williams, R.E., Wisnieski, B. and Fox, C.F. BBRC, 58 (1974) 222.

    PubMed  CAS  Google Scholar 

  32. Ruggieri, S. and Fallini, A. In: Tumor Lipids, Biochemistry and Metabolism, R. Wood (ed). (1973) 89.

    Google Scholar 

  33. Sabine, J.R. Prog. Biochem. Pharmacol. 10 (1975) 269.

    PubMed  CAS  Google Scholar 

  34. Sato, N. and Hagihara, B. Cancer Res. 30 (1970) 2061.

    PubMed  CAS  Google Scholar 

  35. Singer, S.J. and Nicolson, G.L. Science, 175 (1972) 720.

    Article  PubMed  CAS  Google Scholar 

  36. Snyder, F. and Snyder, C. Prog. Biochem. Phar. 10 (1975) 1.

    CAS  Google Scholar 

  37. Sugimura, T., Ikeda, K., Hirota, K., Hozumi, M. and Morris, H.P. Cancer Res. 26 (1966) 1711.

    PubMed  CAS  Google Scholar 

  38. Teise, H. and Bielka, H. Arch. Geshwulstforch, 32 (1968) 11.

    Google Scholar 

  39. van den Bosch, H. Ann. Rev. Biochem. 43 (1974) 243.

    Article  PubMed  Google Scholar 

  40. van Hoeven, R.P. and Emmelot, P. J. Mernb. Biol. 9 (1972) 105.

    Article  Google Scholar 

  41. van Hoeven, R.P. and Emmelot, P. In: Tumor Lipids: Biochemistry and Metabolism, R. Wood (ed). (1973) 126.

    Google Scholar 

  42. Waite, M., Parce, B., Morton, R., Cunningham, C. and Morris, H.P. Cancer Res. (1977) In Press.

    Google Scholar 

  43. Yoshikawa-Fukada, M. and Nojima, T. J. Cell Phys. 80 (1972) 421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Morton, R., Waite, M., Hartz, J.W., Cunningham, C., Morris, H.P. (1978). The Composition and Metabolism of Microsomal and Mitochondrial Membrane Lipids in the Morris 7777 Hepatoma. In: Morris, H.P., Criss, W.E. (eds) Morris Hepatomas. Advances in Experimental Medicine and Biology, vol 92. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8852-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8852-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8854-2

  • Online ISBN: 978-1-4615-8852-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics