Skip to main content

Random and Nonrandom Processes in the Molecular Evolution of Higher Organisms

  • Chapter
  • First Online:

Part of the book series: Advances in Primatology ((AIPR))

Abstract

I will discuss the usefulness of approaching an understanding of evolution through a conceptual analysis of the random and nonrandom processes which occur at the molecular level of proteins and nucleic acids, rather than volunteer an exposition of mathematical methodology available elsewhere in the literature. A qualitatively incorrect concept, however mathematically transformed and quantified, remains biologically uninformative. A correct concept, even though imperfectly quantified, is at least useful; the quantitation can be improved as additional data and insight permit. With cautious optimism, Vogel et al. (this volume) state: “the prospects may not be so poor, provided that we do not expect to develop a final and altogether perfect concept. Our model should be refined step by step. After the first few steps, the picture admittedly may still be oversimplified, but at least the most obvious flaws of the old one are corrected.” On the other hand, the known facts are not likely to be accounted for by an arbitrary choice of model. The evolutionary model presented here embodies both selective (i. e., deterministic) and probabilistic evolutionary mechanisms; it reasonably accounts, both qualitatively and quantitatively, for both the observed random and nonrandom and the Darwinian and selectively neutral patterns of protein and nucleic acid variation. The values for evolutionary divergence between species which were calculated from this model when it was first published in 1972 (Holmquist et al., 1972; Jukes and Holmquist, 1972a) were at that time 2–4 times higher than the values then considered correct.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala, F., 1974, Evolution: Natural selection or random walk? Am. Sci62: 692–701.

    CAS  PubMed  Google Scholar 

  • Beyer, W., Stein, M., Smith, T., and Ulam, S., 1974, A molecular sequence metric and evolutionary trees, Math. Biosci.19: 9–25.

    CAS  Google Scholar 

  • Cameron, I., and Jeter, S. (eds.), 1974, Acidic Proteins of the Nucleus, Academic Press, New York.

    Google Scholar 

  • Christenson, R., 1963, in: Induction and the Evolution of Language, Arthur D. Little, Inc., Cambridge, Mass.

    Google Scholar 

  • Crowson, R., 1975, Anti-Darwinism among the molecular biologists, Nature (London)254: 464.

    Google Scholar 

  • Dayhoff, M., 1972a, Hormones, active peptides, and toxins, Atlas of Protein Sequence and Structure5: D173.

    Google Scholar 

  • Dayhoff, M., 1972b, Atlas of Protein Sequence and Structure5:D234, Matrix 24.

    Google Scholar 

  • Dayhoff, M., Eck, R., and Park, C., 1972, A model of evolutionary change in proteins, Atlas of Protein Sequence and Structure5: 89–99.

    Google Scholar 

  • D’Azzo, J., and Houpis, C., 1966, Feedback Control System Analysis and Synthesis, 2nd ed., Chapter 15, McGraw-Hill, New York.

    Google Scholar 

  • Dickerson, R., 1971, The structure of cytochrome c and the rates of molecular evolution, J. Mol. Evol.1: 26–45.

    CAS  PubMed  Google Scholar 

  • Farris, J., 1972, Estimating phylogenetic trees from distance matrices, Am. Nat.106: 645–668.

    Google Scholar 

  • Feller, W., 1968, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, New York.

    Google Scholar 

  • Fiers, W., Contreras, R., Duerinck, F., Haegman, G., Merregaert, J., Min Jou, W., Raeymakers, A., Volckaert, G., Ysebaert, M., Van de Kerckhove, J., Nolf, F., and Van Montagu, M., 1975, A-protein gene of bacteriophage MS2, Nature (London)256: 273–278.

    CAS  Google Scholar 

  • Fitch, W., 1971, Toward defining the course of evolution: minimum change for a specific tree topology, Syst. Zool.20: 406–416.

    Google Scholar 

  • Fitch, W., and Margoliash, 1967, Construction of phylogenetic tress, Science155: 279–284.

    CAS  PubMed  Google Scholar 

  • Ganong, W., 1973, Review of Medical Physiology, 6th ed., p. 307, Lange Medical Publications, Los Altos, Calif.

    Google Scholar 

  • Gatlin, L., 1972, Information Theory and the Living System, Columbia University Press, New York.

    Google Scholar 

  • Gatlin, L., 1974, Conservation of Shannon’s redundancy for proteins, J. Mol. Evol.3: 182–208.

    Google Scholar 

  • Goldstone, A., and Smith, E., 1966, Amino acid sequence of whale heart cytochrome c, J. Biol. Chem.241: 4480–4486.

    CAS  PubMed  Google Scholar 

  • Goodman, M., and Moore, G., 1971, Immunodiffusion systematics of the primates. I. The Catarrhini, Syst. Zool.20: 19–62.

    CAS  Google Scholar 

  • Goodman, M., Moore, G., Barnabas, J., and Matsuda, G., 1974, The phylogeny of human globin genes investigated by the maximum parsimony method, J. Mol. Evol.3: 1–48.

    CAS  PubMed  Google Scholar 

  • Gould, S., Raup, D., Schopf, T., and Simberloff, D., 1975, in: Research news (G. B. Kolata, reviewer), Paleobiology: Random events over geological time, Science189: 625–626, 660.

    Google Scholar 

  • Holmquist, R., 1972a, Empirical support for a stochastic model of evolution, J. Mol Evol.1: 211–222.

    CAS  PubMed  Google Scholar 

  • Holmquist, R., 1972b, Theoretical foundations for a quantitative approach to paleogenetics. Part i. DNA, J. Mol Evol1: 115–133.

    CAS  Google Scholar 

  • Holmquist, R., 1972c, Theoretical foundations for a quantitative approach to paleogenetics. Part II. Proteins, J. Mol Evol1: 134–149.

    CAS  PubMed  Google Scholar 

  • Holmquist, R., 1972c, Theoretical foundations of paleogenetics, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability: Darwinian, Neo-Darwinian, and Non-Darwinian Evolution, Vol. 5 ( L. LeCam, J. Neyman, and E. Scott, eds.), pp. 315–350, University of California Press, Berkeley.

    Google Scholar 

  • Holmquist, R., 1973, The stochastic model and deviations from randomness in eukaryotic tRNAs: Comparison with the PAM approach, J. Mol Evol2: 145–148.

    CAS  PubMed  Google Scholar 

  • Holmquist, R., 1975, Deviations from compositional randomness in eukaryotic and prokaryotic proteins: The hypothesis of selective-stochastic stability and a principle of charge conservation, J. Mol Evol4: 277–306.

    CAS  PubMed  Google Scholar 

  • Holmquist, R., and Moise, H., 1975, Compositional non-randomness: A quantitatively conserved evolutionary invariant, J. Mol Evol6: 1–14.

    CAS  Google Scholar 

  • Holmquist, R., Cantor, C., and Jukes, T., 1972, Improved procedures for comparing homologous sequences in molecules of proteins and nucleic acids, J. Mol Biol64: 145–161.

    CAS  PubMed  Google Scholar 

  • Holmquist, R., Jukes, T., and Pangburn, S., 1973, Evolution of transfer RNA, J. Mol Biol78: 91–116.

    CAS  PubMed  Google Scholar 

  • Holmquist, R., Jukes, T., Moise, H., Goodman, M., and Moore, G., 1976, The evolution of the globin family genes: Concordance of stochastic and augmented maximum parsimony genetic distances for alpha hemoglobin, beta hemoglobin, and myoglobin phylogenies, J. Mol Biol105: 39–74.

    CAS  PubMed  Google Scholar 

  • Jardine, H., and Sibson, R., 1971, Mathematical Taxonomy, Interscience, New York.

    Google Scholar 

  • Jaynes, E., 1957, Information theory and statistical mechanics, Phys. Rev. 106: 620–630, 108: 171–190.

    Google Scholar 

  • Jukes, T., 1963, Some recent advances in studies of the transcription of the genetic message, Adv. Biol Med. Phys.9: 1–41.

    CAS  PubMed  Google Scholar 

  • Jukes, T., 1971, Comparison of the polypeptide chains of globins, J. Mol Evol1: 46–62.

    CAS  PubMed  Google Scholar 

  • Jukes, T., 1975, Mutations in proteins and base changes in codons, Biochem. Biophys. Res. Commun.66: 1–8.

    CAS  PubMed  Google Scholar 

  • Jukes, T., and Holmquist, R., 1972a, Estimation of evolutionary changes in certain homologous polypeptide chains, J. Mol Biol64: 163–179.

    CAS  PubMed  Google Scholar 

  • Jukes, T., and Holmquist, R., 1972b, Evolutionary clock: Non-constancy of rate in different species, Science177: 530–532.

    CAS  PubMed  Google Scholar 

  • Kimura, M., 1968, Evolutionary rate at the molecular level, Nature (London)217: 624–626.

    CAS  Google Scholar 

  • Kimura, M., and Ohta, T., 1974, On some principles governing molecular evolution, Proc. Natl Acad. Sci. U.S.A.71: 2848–2852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • King, J., and Jukes, T., 1969, Non-Darwinian evolution: Random fixation of selectively neutral mutations, Science164: 788–798.

    CAS  PubMed  Google Scholar 

  • Kolata, G. (reviewer), 1975, Evolution of DNA: Changes in gene regulation, Science189: 446–447.

    CAS  PubMed  Google Scholar 

  • Langley, C., and Fitch, W., 1974, An examination of the constancy of the rate of molecular evolution, J. Mol Evol3: 161–177.

    CAS  PubMed  Google Scholar 

  • Li, S., Denney, R., and Yanofsky, C., 1973, Nucleotide sequence divergence in the α-chain structural genes of tryptophan synthetase from Escherichia coli, Salmonella typhimurium, and Aerobactor aerogenes, Proc. Natl Acad. Sci. USA70: 1112–1116.

    CAS  PubMed  Google Scholar 

  • Lipschutz, S., 1965, Theory and Problems of General Topology, McGraw-Hill, New York.

    Google Scholar 

  • MacQueen, J., and Marschak, J., 1975, Partial knowledge, entropy, and estimation, Proc. Natl Acad. Sci USA72: 3819–3824.

    CAS  PubMed  Google Scholar 

  • McLaughlin, P., and Dayhoff, M., 1972, Evolution of species and proteins: a time scale, Atlas of Protein Sequence and Structure5: 47–52.

    Google Scholar 

  • Moore, G., 1973, An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets, J. Theor. Biol38: 423–457.

    CAS  PubMed  Google Scholar 

  • Moore, G., 1976, Proof of the populous path algorithm for missing mutations in parsimony trees, J. Theor. Biol, (in press).

    Google Scholar 

  • Moore, G., Barnabas, J., and Goodman, M., 1973, A method for constructing maximum parsimony ancestral amino acid sequences on a given network, J Theor. Biol.38: 459–485.

    CAS  PubMed  Google Scholar 

  • Moore, G., Goodman, M., Callahan, C., Holmquist, R., and Moise, H. 1976, Stochastic vs. augmented maximum parsimony method for estimation of superimposed mutations in the divergent evolution of protein sequences—Methods tested on cytochrome c amino acid sequences, J. Mol. Biol.105: 15–38.

    CAS  PubMed  Google Scholar 

  • Ohta, T., 1975, Statistical analyses of Drosophila and human protein polymorphisms, Proc. Natl. Acad. Sci. USA72: 3194–3196.

    Google Scholar 

  • Ohta, T., and Kimura, M., 1971, On the constancy of the evolutionary rate of cistrons, J. Mol. Evol.1: 18–25.

    CAS  Google Scholar 

  • Prager, E., and Wilson, A., 1975, Slow evolutionary loss of the potential for interspecific hybridization in birds: A manifestation of slow regulatory evolution, Proc. Natl. Acad. Sci. USA72: 200–204.

    CAS  PubMed  Google Scholar 

  • Prager, E., Brush, A., Nolan, R., Nakanishi, M., and Wilson, A., 1974, Slow evolution of transferrin and albumin in birds according to microcomplement fixation analysis, J. Mol. Evol.3: 243–262.

    CAS  PubMed  Google Scholar 

  • Raup, D., and Gould, S., 1974, Stochastic simulation and evolution of morphology—towards a nomothetic paleontology, Syst. Zool.23: 305–322.

    Google Scholar 

  • Raup, D., Gould, S., Schopf, T., and Simberloff, D., 1973, Stochastic models of phylogeny and the evolution of diversity, J. Geol.81: 525–542.

    Google Scholar 

  • Romero-Herrera, A., Lehmann, H., Joysey, K., and Friday, A., 1973, Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis, Nature (London)246: 389–395.

    CAS  Google Scholar 

  • Sarich, V., and Wilson, A., 1967, Immunological time scale for hominid evolution, Science158: 1200–1203.

    CAS  PubMed  Google Scholar 

  • Sneath, P., 1966, Relations between chemical structure and biological activity in peptides, J. Theor. Biol.12: 157–195.

    CAS  PubMed  Google Scholar 

  • Sneath, P., 1974, Phylogeny of micro-organisms, Symp. Soc. Gen. Microbiol.24: 1–39.

    CAS  Google Scholar 

  • Sneath, P., and Sokal, R., 1973, Numerical Taxonomy, Freeman, San Francisco.

    Google Scholar 

  • Sokolovsky, M., and Moldovan, M., 1972, Primary structure of cytochrome c from the camel, Camelus dromedarius, Biochemistry11: 145–149.

    CAS  PubMed  Google Scholar 

  • Stebbins, G., 1969, The Basis of Progressive Evolution, pp. 29, 124, University of North Carolina Press, Chapel Hill, N.C.

    Google Scholar 

  • Tomkins, G., 1975, The metabolic code, Science189: 760–763.

    CAS  PubMed  Google Scholar 

  • Tribus, M., 1962, The use of the maximum entropy estimate in the estimation of reliability, in: Recent Developments in Information and Decision Processes ( R. E. Marshall and Paul Grey, eds.), Macmillan, New York.

    Google Scholar 

  • Tribus, M., Shannon, P., and Evans, R., 1966, Why thermodynamics is a logical consequence of information theory, AIChE J. 12: 244–248.

    CAS  Google Scholar 

  • Van Valen, L., 1971, Adaptive zones and the orders of mammals, Evolution25: 420–428.

    PubMed  Google Scholar 

  • Van Valen, L., 1973, A new evolutionary law, Evol. Theory1: 1–30.

    Google Scholar 

  • Van Valen, L., 1974, A natural model for the origin of some higher taxa, J. Herpetol.8: 109–121.

    Google Scholar 

  • Wilson, A., Maxson, L., and Sarich, V., 1974a, Two types of molecular evolution: Evidence from studies of interspecific hybridization, Proc. Natl Acad. Sci USA71: 2843–2847.

    CAS  PubMed  Google Scholar 

  • Wilson, A., Sarich, V., and Maxson, L., 1974b, The importance of gene rearrangement in evolution: Evidence from studies on rates of chromosomal, protein, and anatomical evolution, Proc. Natl. Acad. Sci. USA71: 3028–3030.

    CAS  PubMed  Google Scholar 

  • Zuckerkandl, E., and Pauling, L., 1962, Molecular disease, evolution, and genie heterogeneity, in: Horizons in Biochemistry ( M. Kasha and B. Pullman, eds.), pp. 189–225, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Holmquist, R. (1976). Random and Nonrandom Processes in the Molecular Evolution of Higher Organisms. In: Goodman, M., Tashian, R.E., Tashian, J.H. (eds) Molecular Anthropology. Advances in Primatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-8783-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8783-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-8785-9

  • Online ISBN: 978-1-4615-8783-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics