Skip to main content

The Defect Structure of Transition-Metal Monoxides

  • Chapter
Defects and Transport in Oxides

Part of the book series: Battelle Institute Materials Science Colloquia ((BIMSC))

Abstract

Quantitative measurements of the diffuse scattering from wüstite (FexO) at 840°C are reported. The clusters of vacancies and tetrahedral ions found previously in quenched specimens are also found at tempera­ture in the stable one-phase field. These clusters are smaller and contain more octahedral iron than those found in a quenched specimen. As x increases the clusters become smaller, and the concentration of tetrahedral ions in them decreases, even more rapidly than the octahedral ion concentration.

Portions of the diffuse scattering from VOx are shown to be related to the Fermi surface and hence to long-range electronic interactions. As x increases the electron concentration in the Brillouin zone decreases.

Currentlya Postdoctoral Fellow, Linköping University, Linköping, Sweden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jette, E. R., and Foote, F., J. Chem. Phys., 1, 29 (1933).

    Article  CAS  Google Scholar 

  2. Roth, W. L., Acta Cryst., 13, 140 (1960).

    Article  CAS  Google Scholar 

  3. Smuts, J., J. Iron and Steel Inst, 204, 237 (1966).

    Google Scholar 

  4. Koch, F. B., and Cohen, J. B., Acta Cryst., B25, 275 (1969).

    Google Scholar 

  5. Stiglich, J. J., Jr., Whitmore, D. H., and Cohen, J. B., J. Am. Ceram. Soc., 56, 211 (1973).

    Article  CAS  Google Scholar 

  6. Manenc, J., J. Phys. Rad., 24, 447 (1963);

    Article  CAS  Google Scholar 

  7. Manenc, J., Bourgeot, J., and Bénard, J., Compt. Rend. Acad. Sci. Paris, 256, 931 (1963).

    CAS  Google Scholar 

  8. Herai, T., Thomas, B., Manenc, J., and Bénard, J., Compt. Rend. Acad. Sci. Paris, 258, 4528 (1964).

    CAS  Google Scholar 

  9. Hayakawa, M., Cohen, J. B., and Reed, T. B , J. Am. Ceram. Soc., 55, 160 (1972).

    Article  CAS  Google Scholar 

  10. Manenc, J., Mem. Scientifique Rev. Metallurg. LXIV. No. 718 (1967);

    Google Scholar 

  11. Bénard, J., Herai, T., and Manenc, J., Ann. Chim., 5, 240 (1970).

    Google Scholar 

  12. Koch, F. B., and Fine, M. E., J. Appl Phys., 38, 1470 (1967).

    Article  CAS  Google Scholar 

  13. Anand, H. R., and Mullen, J. G., to be published.

    Google Scholar 

  14. Hembree, P. L., and Wagner, J. B., Trans. Met. Soc. AIME, 245, 1547 (1969).

    CAS  Google Scholar 

  15. Geiger, G. H., Levin, R. L., and Wagner, J. B., J. Phys. Chem. Solids, 27, 947 (1966).

    Article  CAS  Google Scholar 

  16. Banus, M. D., and Reed, T. B., in The Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. O′Keeffe (Eds.), North-Holland Publishing Co., Amsterdam (1970), p. 488.

    Google Scholar 

  17. Andersson, B., and Gjønnes, J., Acta Chem. Scand, 24, 2250 (1970).

    Article  CAS  Google Scholar 

  18. Bell, P. S., and Lewis, M. H., Phys. Stat. Sol, 7, 431 (1971).

    Article  CAS  Google Scholar 

  19. Andersson, B., and Tafto, J., Proc. 5th European Conf. on Electron Microscopy, p. 670 (1972).

    Google Scholar 

  20. Castles, J. R., Cowley, J. M., and Spargo, A.E.C., Acta Cryst, A27, 376 (1971).

    Google Scholar 

  21. Watanabe, D., Intl. Conference on Electron Diffraction and Crystal Defects, Australian Academy of Science, I-C-3.

    Google Scholar 

  22. Watanabe, D., Castles, J. R., Jostons, A., and Malin, U.S., Acta Cryst., 23, 307 (1967).

    Article  CAS  Google Scholar 

  23. Watanabe, D., Terasaki, O., Jostons, A., and Castles, J. R., J. Phys. Soc. Japan, 25, 292 (1968).

    Article  CAS  Google Scholar 

  24. Hilti, E., Naturwissenschaften, 55, 130 (1968).

    Article  CAS  Google Scholar 

  25. Watanabe, D., Terasaki, O., Jostons, A., and Castles, J. R., The Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. O′Keeffe (Eds.), North-Holland Publishing Co., Amsterdam (1970), p. 238.

    Google Scholar 

  26. Nakahira, M., and Saekl, M., 7th Intl. Symposium on the Reactivity of Solids, School of Chemistry, University of Bristol, Bristol, England, Paper 2.1.

    Google Scholar 

  27. Morin, F. J., Phys. Rev. Letters, 3, 34 (1959).

    Article  CAS  Google Scholar 

  28. Austin, I. G., Phil. Mag., 7, 961 (1962).

    Article  CAS  Google Scholar 

  29. Kawano, S., Kosuge, K., and Kachi, S., J. Phys. Soc. Japan, 21, 2744 (1966).

    Article  CAS  Google Scholar 

  30. Steinitz, R., General Telephone and Electronics Laboratory, Inc., Bayside, L.I., New York, unpublished.

    Google Scholar 

  31. Ariya, S. M., Bruck, B.J.A., and Vladimirova, V. A., Vestnik Leningrad University, Ser. Fiz. Khim., 22, 157 (1967).

    Google Scholar 

  32. Cheetham, A. K., Fender, B.E.F., and Taylor, R. I., J. Phys. Chem. Solid State Phys., 4, 2160 (1971).

    Article  CAS  Google Scholar 

  33. Hayakawa, M., Ph.D. Thesis, X-Ray Diffraction Studies of Wüstite at High Temperature, Northwestern University, Evanston, Illinois, June 1973: to be published.

    Google Scholar 

  34. Fujiwara, K., J. Phys. Soc. Japan, 12, 7 (1957).

    Article  CAS  Google Scholar 

  35. Gehlen, P. C, and Cohen, J. B., Phys. Rev., 139, A844 (1965).

    Article  CAS  Google Scholar 

  36. Gragg, J. E., Bardhan, P., and Cohen, J. B., Critical Phenomena in Alloys, Magnets and Superconductors, R. E. Mills, E. Ascher, and R. I. Jaffee (Eds.) McGraw-Hill Book Company, New York (1971), p. 309.

    Google Scholar 

  37. Clapp, P. C., and Moss, S. C., Phys. Rev., 142, 418 (1966); 171, 754 (1968);

    Article  CAS  Google Scholar 

  38. Moss, S. C, and Clapp, P. C, ibid., 171, 764 (1968).

    CAS  Google Scholar 

  39. Krivoglaz, M. A., and Hao, T′u, Collection,Defects and Properties of the Crystal Lattice, Kive: lzd. “Maukova, Dumka” (1969).

    Google Scholar 

  40. Krivoglaz, M. A., Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Plenum Press, Inc., New York (1969).

    Google Scholar 

  41. Moss, S. C., Phys. Rev. Letters, 22, 1108 (1969).

    Article  CAS  Google Scholar 

  42. Tewar, I. S., Solid State Comm., 11, 1139 (1972).

    Article  Google Scholar 

  43. Takeuchi, S., and Suzak, K., Nippon Kinzoku-Gakkaishi, 33, 409 (1969).

    CAS  Google Scholar 

  44. Norwood, T. E., and Fry, J. L., Phys. Rev., B2 (2): 472 (1973).

    Google Scholar 

  45. Gubernatis, J. E., and Taylor, P. L., Solid State Comm., 12, 309 (1973).

    Article  CAS  Google Scholar 

  46. Borie, B., and Sparks, C. J., Acta Cryst., A27, 198 (1971).

    Google Scholar 

  47. Gragg, J. E., Jr., and Cohen, J. B., Acta Met., 19, 507 (1971).

    Article  CAS  Google Scholar 

  48. Gehlen, P. C, Rev. Sci. Instr., 40, 715 (1969).

    Article  Google Scholar 

  49. Schwartz, L. H., Morrison, L. A., and Cohen, J. B., Applications of X-Ray Analysis, 7, 281 (1961).

    Google Scholar 

  50. Batterman, B. W., Chipman, D. R., and DeMarco, J. J., Phys. Rev., 122, 68 (1961).

    Article  CAS  Google Scholar 

  51. Gragg, J. E., Jr., Hayakawa, M., and Cohen, J. B., J. Appl. Cryst., 6, 59 (1973).

    Article  CAS  Google Scholar 

  52. International Tables for X-Ray Crystallography, The Kynoch Press, Birmingham, England (1965), Vol. III.

    Google Scholar 

  53. Tokonami, M., Acta Cryst., 19, 486 (1965).

    Article  CAS  Google Scholar 

  54. Carel [Compt. Rend. Acad. Sci. Parts, 277, 69 (1973)] has reported that the data on lattice parameter of FexO in ref. 8 can be interpreted as indicating subphases. He could draw regions of lattice parameter versus x with different parabolic fits through different portions of the data. However he uses only 4 to 5 data points for each region, and it is not clear how the compositions (at which the curvature changes) are chosen. Furthermore with previous data for the lattice parameter of quenched specimens G Carel C, Wengel D., and Vallet, P., Compt. Rend. Acad. Sci., 260, 4325 (1965), straight lines were employed and the region with the highest slope of ao vs x was the one with the lowest slope at high temperatures. Changes in thermal expansion of ≈ 20 pct are required as x changes from 0.902 to 0.956. But measurements by the present authors indicate changes of at most 5 percent. There remains no substantive evidence for subphases.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hayakawa, M., Morinaga, M., Cohen, J.B. (1974). The Defect Structure of Transition-Metal Monoxides. In: Seltzer, M.S., Jaffee, R.I. (eds) Defects and Transport in Oxides. Battelle Institute Materials Science Colloquia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8723-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8723-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8725-5

  • Online ISBN: 978-1-4615-8723-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics