Skip to main content

Neuromuscular Transmission—Presynaptic Factors

  • Chapter
The Peripheral Nervous System

Abstract

There is an enormous body of evidence indicating that ACh is synthesized and stored in, and released from, motor nerve terminals. Release of ACh from nerve terminals occurs spontaneously in multimolecular amounts (quanta) which can be detected by the resulting depolarization (m.e.p.p.) of the muscle membrane at the end plate. Nerve impulses accelerate quantal release. The quantal nature of release is currently thought to arise because ACh is stored in, and released from, the synaptic vesicles found in great number in nerve terminals (vesical hypothesis). Quantal release is then the release of the contents of vesicles into a synaptic cleft (reviewed by Martin, 1966; Hubbard, 1970, 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamic, S., 1970, Accumulation of acetylcholine by the rat diaphragm, Biochem. Pharmacol. 19:2445.

    Article  PubMed  CAS  Google Scholar 

  • Andersson-Cedergren, E., 1959, Ultra-structure of motor end-plate and sarcoplasmic components of mouse skeletal muscle fibre as revealed by three dimensional reconstructions from serial sections, J. Ultrastruct. Res. 1:1.

    Google Scholar 

  • Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol. 24:111.

    Article  Google Scholar 

  • Baker, P. F., Hodgkin, A. L., and Ridgway, E. B., 1971, Depolarization and calcium entry in squid giant axons, J. Physiol. Lond. 218:709.

    PubMed  CAS  Google Scholar 

  • Bartley, J., Abraham, S., and Chaikoff, I. L., 1965, Concerning the form in which acetyl units produced in mitochondria are transferred to the site of de novo fatty acid synthesis in the cell, Biochem. Biophys. Res. Commun. 19:770.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, P. R., and Mambrini, J., 1970, Modification of transmitter release by ions which prolong the presynaptic action potential, J. Physiol. Lond. 210:681.

    PubMed  CAS  Google Scholar 

  • Berg, P., 1956a, Acyl adrenylates: An enzyme mechanism of acetate activation, J. Biol. Chem. 222:991.

    CAS  Google Scholar 

  • Berg, P., 1956b, Acyl adrenylates: The synthesis and properties of adrenyl acetate, Biol. Chem. 222:1015.

    CAS  Google Scholar 

  • Betz, W. J., 1970, Depression of transmitter release at neuromuscular junction of the frog, J. Physiol. 206:629.

    PubMed  CAS  Google Scholar 

  • Birks, R. I., 1966, The fine structure of motor nerve endings at frog myoneural junctions, Ann. N.Y. Acad. Sci. 135:8.

    Article  PubMed  CAS  Google Scholar 

  • Birks, R. L., and Cohen, M. W., 1965, Effects of sodium on transmitter release from frog motor nerve terminals, in: Muscle (W. M. Paul, E. E. David, C. M. Kay, and G. Monckton, eds.), pp. 403–420, Pergamon Press, Oxford.

    Google Scholar 

  • Birks, R., and Macintosh, F. C., 1961, Acetylcholine metabolism of a sympathetic ganglion, Can. J. Biochem. Physiol. 39:787.

    Article  CAS  Google Scholar 

  • Birks, R., Huxley, H. E., and Katz, R., 1960, The fine structure of the neuromuscular junction of the frog, J. Physiol. Lond 150:134.

    PubMed  CAS  Google Scholar 

  • Bligh, J., 1952, The level of free choline in plasma, J. Physiol. Lond. 117:234.

    PubMed  CAS  Google Scholar 

  • Blioch, Z. L., Glagoleva, I. M., Liberman, E. A., and Nenashev, V. A., 1968, A study of the mechanism of quantal transmitter release at a chemical synapse, J. Physiol. Lond. 199:11.

    PubMed  CAS  Google Scholar 

  • Boyd, I. A., and Martin, A. R., 1956, Spontaneous subthreshold activity at mammalian neuromuscular junctions, J. Physiol. Lond. 132:61.

    PubMed  CAS  Google Scholar 

  • Braun, M., and Schmidt, R. F., 1966, Potential changes recorded from the frog motor nerve terminal during its activation, PflĂĽgers Arch. Ges. Physiol. 287:56.

    Article  CAS  Google Scholar 

  • Bunt, A. H., 1969, Formation of coated and synaptic vesicles within neurosecretory axon terminals of the crustacean sinus gland, J. Ultrastruct. Res. 28:411.

    Article  PubMed  CAS  Google Scholar 

  • Capek, R., Esplin, D. W., and Salehmoghaddam, S., 1971, Rates of transmitter turnover at the frog neuromuscular junction estimated by electrophysiological techniques, J. Neurophysiol. 34:831.

    PubMed  CAS  Google Scholar 

  • Canepa, F. G., 1964, Acetylcholine quanta, Nature 201:184.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. C., and Lee, C., 1970, Studies on the [3H]choline uptake in rat phrenic nervediaphragm preparations, Neuropharmacology 9:223.

    Article  PubMed  CAS  Google Scholar 

  • Chen, I. L., and Lee, C. Y., 1970, Ultrastructural changes in the motor nerve terminals caused by Ăź bungarotoxin, Virchows Arch. Abt. B. Zellpathol 6:318.

    CAS  Google Scholar 

  • Christensen, B. N., and Martin, A. R., 1970, Estimates of probability of transmitter release at the mammalian neuromuscular junction. J. Physiol. Lond. 210:933.

    PubMed  CAS  Google Scholar 

  • Clark, A. W., Hurlbut, W. P., and Mauro, A., 1972, Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom, J. Cell Biol. 52:1.

    Article  PubMed  CAS  Google Scholar 

  • Colomo, F., and Rahamimoff, R., 1968, Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction, J. Physiol. Lond. 198:203.

    PubMed  CAS  Google Scholar 

  • Cooke, J. D., Okamoto, K., and Quastel, D. N. J., 1973, The role of calcium in depolarization-secretion coupling at the motor nerve terminal, J. Physiol. 228:459.

    PubMed  CAS  Google Scholar 

  • Couteaux, R., and PĂ©cot-Dechavassine, M., 1970, Vesicles synaptiques et poches an niveau des “zones actives” de la jonction neuromusculaire, Compt. Rend. Acad. Sci. 271:2346.

    CAS  Google Scholar 

  • Csillik, B., and Bense, S., 1971, Function dependent alterations in the distribution of synaptic vesicles, Acta Biol. Acad. Sci. Hung. 22:131.

    PubMed  CAS  Google Scholar 

  • De Duve, C., Wattiaux, R., and Baudhuin, P., 1962, Distribution of enzymes between subcellular fractions in animal tissues, in: Advances in Enzymology, Vol. 24 (R. F. Nord, ed.), pp. 192–358, Interscience, New York.

    Google Scholar 

  • Del Castillo, J., and Katz, B., 1954a, Quantal components of the endplate potential, J. Physiol. 124:560.

    Google Scholar 

  • Del Castillo, J., and Katz, B., 1954b, Changes in endplate activity produced by presynaptic polarization, J. Physiol. Lond. 124:586.

    Google Scholar 

  • Del Castillo, J., and Katz, B., 1954c, Statistical factors involved in neuromuscular facilitation and depression, J. Physiol. Lond. 124:574.

    Google Scholar 

  • Del Castillo, J., and Katz, B., 1955a, On the localization of acetylcholine receptors, J. Physiol. Lond. 128:157.

    Google Scholar 

  • Del Castillo, J., and Katz, B., 1955b, Local activity at a depolarized nerve-muscle junction, J. Physiol. Lond. 128:396.

    Google Scholar 

  • Del Castillo, J., and Katz, B., 1956, Biophysical aspects of neuromuscular transmission, Progr. Biophys. Biophys. Chem. 6:121.

    Google Scholar 

  • Dodge, F. A., Jr., and Rahamimoff, R., 1967, Co-operative action of calcium ions in transmitter release at the neuromuscular junction, J. Physiol. Lond. 193:419.

    PubMed  CAS  Google Scholar 

  • Dodge, F. A., Jr., Miledi, R., and Rahamimoff, R., 1969, Strontium and quantal release of transmitter at the neuromuscular junction, J. Physiol. Lond. 200:267.

    PubMed  CAS  Google Scholar 

  • Eccles, J. C., and Jaeger, J. C., 1957, The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs, Proc. Roy. Soc. Sci. B 148:38.

    Article  Google Scholar 

  • Eccles, J. C., Katz, B., and Kuffler, S. W., 1941, Nature of the “end-plate potential” in curarized muscle, J. Neurophysiol. 4:363.

    Google Scholar 

  • Ekstrom, J., and Emmelin, N., 1971, Movement of choline acetyltransferase in axons disconnected from their cell bodies, J. Physiol. Lond. 216:247.

    PubMed  CAS  Google Scholar 

  • Elmqvist, D., and Quastel, D. M. J., 1965a, Presynaptic action of hemicholinum at the neuromuscular junction, J. Physiol. Lond. 167:463.

    Google Scholar 

  • Elmqvist, D., and Quastel, D. M. J., 1965b, A quantitative study of end-plate potentials in isolated human muscle, J. Physiol. Lond. 178:505.

    CAS  Google Scholar 

  • Emmelin, H., and Macintosh, F. C., 1956, The release of acetylcholine from perfused sympathetic ganglia and skeletal muscle, J. Physiol. Lond. 131:477.

    PubMed  CAS  Google Scholar 

  • Feng, T. P., 1941, Studies on the neuromuscular junction. XXVI. The changes of the end-plate potential during and after the prolonged stimulation, Chin. J. Physiol. 16:341.

    CAS  Google Scholar 

  • Fonnum, F., 1968, Choline acetyltransferase binding to and release from membranes, Biochem. J. 109:389.

    PubMed  CAS  Google Scholar 

  • Fonnum, F., 1970, Surface charge of choline acetyltransferase from different species, J. Neurochem. 17:1095.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., Frizell, M., and SjФstrand, J., 1973, Transport, turnover and distribution of choline acetyltransferase and acetylcholinesterase in the vagus and hypoglossal nerves of the rabbit, J. Neurochem. 21:1109.

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser, B., 1957, The effect of calcium on the myelinated nerve fibre, J. Physiol. Lond. 137:245.

    PubMed  CAS  Google Scholar 

  • Frizell, M., Hasselgren, P. O., and SjФstrand, J., 1970, Axoplasmic transport of acetylcholinesterase and choline acetyltransferase in the vagus and hypoglossal nerve of the rabbit, Exptl. Brain. Res. 10:526.

    Article  CAS  Google Scholar 

  • Gage, P. W., and Hubbard, J. I., 1965, Evidence for a Poisson distribution of miniature end-plate potentials and some implications, Nature 208:395.

    Article  PubMed  CAS  Google Scholar 

  • Gage, P. W., and Hubbard, J. I., 1966, An investigation of the post-tetanic potentiation of end-plate potentials at a mammalian neuromuscular junction, J. Physiol. Lond. 184:353.

    PubMed  CAS  Google Scholar 

  • Gage, P. W., and Quastel, D. M. J., 1966, Competition between sodium and calcium ions in transmitter release at a mammalian neuromuscular junction, J. Physiol. Lond. 185:95.

    PubMed  CAS  Google Scholar 

  • Glagoleva, I. M., Liberman, E. A., and Khashaev, Z. Kh.-M., 1970, Effect of uncouplers of oxidative phosphorylation on output of acetylcholine from nerve endings, Biofizika 15:76.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Saito, N., 1959, Voltage-current relations in nerve cell membrane of Onechidium verruculatum, J. Physiol. Lond. 148:161.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Tasaki, I., 1958, A study of the mechanism of impulse transmission across the giant synapse of the squid, J. Physiol. Lond. 143:114.

    PubMed  CAS  Google Scholar 

  • Hebb, C., 1963, Formation, storage and liberation of acetylcholine, in: Cholinesterases and Anticholinesterase Agents (G. B. Koelle, ed.), pp. 55–88, Springer-Verlag, Berlin.

    Google Scholar 

  • Hebb, C. O., and Silver, A., 1961, Gradient of choline acetylase activity, Nature 189:123.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, C. O., and Waites, G. M. H., 1956, Choline acetylase in antero- and retrograde degeneration of a cholinergic nerve, J. Physiol. Lond. 132:667.

    PubMed  CAS  Google Scholar 

  • Hebb, C. O., KrnjevĂ­c, K., and Silver, A., 1964, Acetylcholine and choline acetyltransferase in the diaphragm of the rat, J. Physiol. Lond. 171:504.

    PubMed  CAS  Google Scholar 

  • Heuser, J., and Miledi, R., 1971, Effect of lanthanum ions on function and structure of frog neuromuscular junctions, Proc. Roy. Soc. Lond. B. 179:247.

    Article  CAS  Google Scholar 

  • Heuser, J., and Reese, T. S., 1972, Stimulation induced uptake and release of peroxidase from synaptic vesicles in frog neuromuscular junctions, Anat. Rec. 172:329.

    Google Scholar 

  • Hodgkin, A. L., and Katz, B. J., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. Lond. 108:37.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Keynes, R. D., 1957, Movement of labelled calcium in squid giant axons, J. Physiol. Lond. 138:253.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., 1961, The effect of calcium and magnesium on the spontaneous release of transmitter from mammalian motor nerve endings, J. Physiol. Lond. 159:507.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., 1963, Repetitive stimulation at the mammalian neuromuscular junction and the mobilization of transmitter, J. Physiol. Lond. 169:641.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., 1970, Mechanism of transmitter release, Progr. Biophys. Mol. Biol. 21:33.

    Article  CAS  Google Scholar 

  • Hubbard, J. I., 1973, Microphysiology of vertebrate neuromuscular transmission, Physiol. Rev. 53:674.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., and Jones, S., 1973, Spontaneous quantal transmitter release: A statistical analysis and some implications, J. Physiol. Lond. 232:1.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., and Kwanbunbumpen, S., 1968, Evidence for the vesicle hypothesis, J. Physiol. Lond. 194:407.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., and Schmidt, R. F., 1963, An electrophysiological investigation of mammalian motor nerve terminals, J. Physiol. London. 166:145.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., and Wilson, D. F., 1973, Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of D-tubocurarine, J. Physiol. Lond. 228:307.

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I., Jones, S. F., and Landau, E. M., 1968a, On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals, J. Physiol. Lond. 194:355.

    CAS  Google Scholar 

  • Hubbard, J. I., Jones, S. F., and Landau, E. M., 1968b, On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses, J. Physiol. Lond. 196:75.

    CAS  Google Scholar 

  • Hubbard, J. I., Jones, S. F., and Landau, E. M., 1971, The effect of temperature change upon transmitter release, facilitation and post-tetanic potentiation, J. Physiol. Lond. 216:591.

    PubMed  CAS  Google Scholar 

  • Hutter, O. F., and Kostial, K., 1955, The relationship of sodium ions to the release of acetylcholine, J. Physiol. Lond. 129:159.

    PubMed  CAS  Google Scholar 

  • Israel, M., Gautron, J., and Lesbats, B., 1968, Isolement des vĂ©sicules synaptiques de l’organe Ă©lectrique de la Torpille et localization de l’acetylcholine Ă  leur niveau, Compt. Rend. Hebd. Seanc. Acad. Sci. Paris 266:273.

    CAS  Google Scholar 

  • Jenkinson, D. H., 1957, The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction, J. Physiol. Lond. 138:438.

    Google Scholar 

  • Jones, S. F., and Kwanbunbumpen, S., 1970, The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction, J. Physiol. Lond. 207:31.

    PubMed  CAS  Google Scholar 

  • Kanaseki, T., and Kadota, K., 1969, The vesicle in a “basket”: A morphological study of the coated vesicle fraction isolated from the nerve endings of the guinea pig brain with special reference to the mechanism of membrane movements, J. Cell Biol. 42:202.

    Article  PubMed  CAS  Google Scholar 

  • Kao, C. T., 1966, Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena, Pharmacol. Rev. 18:997.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1965a, Propagation of electric activity in motor nerve terminals, Proc. Roy. Soc. Lond. B 161:453.

    Article  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1965b, The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction, Proc. Roy. Soc. Lond. B 161:483.

    Article  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1965c, The effect of calcium on acetylcholine release from motor nerve endings, Proc. Roy. Soc. Lond. B 161:496.

    Article  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1965d, The effect of temperature on the synaptic delay at the neuromuscular junction, J. Physiol. Lond. 181:656.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1967a, Tetrodotoxin and neuromuscular transmission, Proc. Roy. Soc. Lond. B 167:8.

    Article  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1967b, The release of acetylcholine from nerve endings by graded electric pulses, Proc. Roy. Soc. Lond. B 167:23.

    Article  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1967c, The timing of calcium action during neuromuscular transmission, J. Physiol. Lond. 189:535.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1968a, The role of calcium in neuromuscular facilitation, J. Physiol. Lond. 195:481.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1968b, The effect of local blockage of motor nerve terminals, J. Physiol. Lond. 199:729.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1969a, Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol. Lond. 203:459.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1969b, Spontaneous and evoked activity of motor nerve endings in calcium Ringer, J. Physiol. Lond. 203:689.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1970, A further study of the role of calcium in synaptic transmission, J. Physiol. Lond. 207:789.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R,, 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. Lond. 224:665.

    PubMed  CAS  Google Scholar 

  • Kelly, J. S., 1968, The antagonism of Ca+ + by Na+ and other monovalent ions at the frog neuromuscular junction, Quart. J. Exptl. Physiol. 53:239.

    CAS  Google Scholar 

  • Korneliussen, H., Barstad, J. A. B., and Lilleheil, G., 1972, Vesicle hypothesis, effect of nerve stimulation on the synaptic vesicles of motor endplates, Experientia 28:1055.

    Article  PubMed  CAS  Google Scholar 

  • Krnjević, K., and Miledi, R., 1959, Presynaptic failure of neuro-muscular propagation in rats, J. Physiol. Lond. 149:1.

    PubMed  Google Scholar 

  • Krnjević, K., and Mitchell, J. F., 1961, The release of acetylcholine in the isolated rat diaphragm, J. Physiol. Lond. 155:246.

    PubMed  Google Scholar 

  • Kuba, K., and Tomita, T., 1972, Effect of noradrenaline on miniature end-plate potentials and on end-plate potential, J. Theoret. Biol. 36:81.

    Article  CAS  Google Scholar 

  • Kuno, M., Turkanis, S. A., and Weakley, J. N., 1971, Correlation between nerve terminal size and transmitter release at the neuromuscular junction of the frog, J. Physiol Lond. 213:545.

    PubMed  CAS  Google Scholar 

  • Landau, E. M., 1969, The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals, J. Physiol. Lond. 203:281.

    PubMed  CAS  Google Scholar 

  • Laskowski, M. B., and Thies, R., 1972, Interaction between clacium and barium on the spontaneous release of transmitter from mammalian motor nerve terminals, Internat. J. Neurosci. 4:11.

    Article  CAS  Google Scholar 

  • Lermer, H., 1971, Estimation of quantal content in detubulated nerve-muscle preparation, in: Proceedings of the Twenty-fifth International Congress of Physiology, Vol. 9, German Physiological Society, Munich, p. 344.

    Google Scholar 

  • Liley, A. W., 1956, The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction, J. Physiol. Lond. 134:427.

    PubMed  CAS  Google Scholar 

  • Liley, A. W., and North, K. A. K, 1953, An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction, J. Neuro-Physiol. 16:509.

    CAS  Google Scholar 

  • Llinas, R., Blinks, J. R., and Nicholson, C., 1972, Calcium transient in presynaptic terminals of squid giant synapse: Detection with aequorin, Science N. Y. 176:1127.

    Article  CAS  Google Scholar 

  • Longenecker, H. E., Hurlbut, W. P., Mauro, A., and Clark, A. W., 1970, Effects of black widow spider venom on the frog neuromuscular junctions: Effects on endplate potential, miniature endplate potential and nerve terminal spike, Nature 225:701.

    Article  PubMed  Google Scholar 

  • Lowenstein, J. M., 1964, in: Oxygen in the Animal Organism (F. Duhens and E. Neil, Eds.), p. 163, Pergamon Press, Oxford.

    Google Scholar 

  • Lundberg, A., and Quilisch, H., 1953, Presynaptic potentiation and depression of neuromuscular transmission in frog and rat, Acta Physiol. Scand. 30: Suppl. III.

    Google Scholar 

  • Macintosh, F. C., 1959, Formation, storage, and release of acetylcholine at nerve endings, Can. J. Biochem. Physiol. 37:343.

    Article  PubMed  CAS  Google Scholar 

  • Mallart, A., and Martin, A. R., 1967, An analysis of facilitation of transmitter release at the neuromuscular junction of the frog, J. Physiol. Lond. 193:679.

    PubMed  CAS  Google Scholar 

  • Mallart, A., and Martin, A. R., 1968, The relation between quantum content and facilitation at the neuromuscular junction of the frog, J. Physiol. Lond. 196:593.

    PubMed  CAS  Google Scholar 

  • Martin, A. R., 1955, A further study of the statistical composition of end-plate potential, J. Physiol. Lond. 130:114.

    PubMed  CAS  Google Scholar 

  • Martin, A. R., 1966, Quantal nature of synaptic transmission, Physiol. Rev. 46:51.

    CAS  Google Scholar 

  • Meiri, U., and Rahamimoff, R., 1971, Activation of transmitter release by strontium and calcium ions at the neuromuscular junction, J. Physiol. Lond. 215:709.

    PubMed  CAS  Google Scholar 

  • Miledi, R., 1961, From nerve to muscle, Discovery 22:442.

    Google Scholar 

  • Mitchell, J. F., and Silver, A., 1963, The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat, J. Physiol. Lond. 165:117.

    PubMed  CAS  Google Scholar 

  • Musick, J., and Hubbard, J. I., 1972, Release of protein from mouse motor nerve terminals, Nature 237:279.

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa, J., Douglas, W. W., and Schulz, R. A., 1970, Ultrastructural evidence of secretion by exocytosis and of a synaptic vesicle formation in posterior pituitary glands, Nature 221:401.

    Google Scholar 

  • Nickel, E., Vogel, A., and Waser, P. G., 1967, “Coated vesicles” in der Umgebung der neuro muskularen Synapsen, Z. Zellforsch. Mikroskop. Anat. 78:261.

    Article  CAS  Google Scholar 

  • Potter, L. T., 1970, Synthesis, storage and release of [14C] acetylcholine in isolated rat diaphragm muscles, J. Physiol. Lond. 206:145.

    PubMed  CAS  Google Scholar 

  • Rahamimoff, R., 1968, A dual effect of calcium ions on neuromuscular facilitation, J. Physiol. Lond. 195:471.

    PubMed  CAS  Google Scholar 

  • Rahamimoff, R., and Yaari, Y., 1973, Delayed release of transmitter at the frog neuromuscular junction, J. Physiol. Lond. 228:241.

    PubMed  CAS  Google Scholar 

  • Rosenthal, J., 1969, Post-tetanic potentiation at the neuromuscular junction of the frog, J. Physiol. Lond. 203:121.

    PubMed  CAS  Google Scholar 

  • Roth, T. F., and Porter, K. R., 1964, Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L., J. Cell Biol. 20:313.

    Article  PubMed  CAS  Google Scholar 

  • Saekens, T. K., and Stoll, W. R., 1965, Radiochemical determination of choline and acetylcholine flux from isolated tissue, J. Pharmacol. Exptl. Therap. 147:336.

    Google Scholar 

  • Samojloff, A., 1925, Zur Frage des Ăśberganges der Erregung vom motorischen Nerven auf der quergestreiften Muskel, PflĂĽgers Arch. Ges. Physiol. 208:508.

    Article  Google Scholar 

  • Sheridan, M. N., Whittaker, V. P., and Israel, M., 1966, The subcellular fractionation of the electric organ of Torpedo, Z. Zellforsch. Mikroskop. Anat. 74:291.

    Article  CAS  Google Scholar 

  • Silinsky, E., and Hubbard, J. I., 1973, Release of ATP from rat notor nerve terminals, Nature 243:404.

    Article  PubMed  CAS  Google Scholar 

  • Sollenberg, J., and Sorbo, B., 1970, On the origin of the acetylcholine in brain studied with a differential labelling technique using 3H-14C-mixed labelled glucose and acetate, J. Neurochem. 17:201.

    Article  PubMed  CAS  Google Scholar 

  • Straughan, D. W., 1960, The release of acetylcholine from mammalian motor nerve endings, Brit. J. Pharmacol. 15:417.

    PubMed  CAS  Google Scholar 

  • Takeuchi, A., 1958, The long-lasting depression in neuromuscular transmission of frog, Jap. J. Physiol. 8:102.

    Article  CAS  Google Scholar 

  • Takeuchi, A., and Takeuchi, N., 1962, Electrical changes in the pre- and postsynaptic axons of the giant synapse of Loligo, J. Gen. Physiol. 45:1181.

    Article  PubMed  CAS  Google Scholar 

  • Thies, R. E., 1965, Neuromuscular depression and apparent depletion of transmitter in mammalian muscle, J. Neurophysiol. 28:427.

    Google Scholar 

  • Tucek, S., 1967, Observations on the subcellular distribution of choline acetyltransferase in the brain tissue of mammals and comparison of acetylcholine synthesis from acetate and citrate in homogenates and nerve ending fractions, J. Neurochem. 14:519.

    Article  PubMed  CAS  Google Scholar 

  • Tucek, S., 1968, Motor nerve and the activity of choline acetyltransferase in the skeletal muscle, Biochim. Biophys. Acta 170:457.

    Article  PubMed  CAS  Google Scholar 

  • Tucek, S., and Cheng, S.-C., 1970, Precursors of acetyl groups in acetylcholine in the brain in vivo, Biochim. Biophys. Acta 208:538.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, M. B., Goldberg, A. M., and Shideman, F. E., 1967, The synthesis of labelled acetylcholine by the isolated cat heart and its release by vagal stimulation, Internat. J. Neuropharmacol. 6:317.

    Article  CAS  Google Scholar 

  • Weinrich, D., 1971, Ionic mechanism of post-tetanic potentiation at neuromuscular junction of frog, J. Physiol. Lond. 212:431.

    Google Scholar 

  • Werman, R., 1971, The number of receptors for calcium ions at the nerve terminals of one endplate, Comp. Gen. Pharmacol. 2:129.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, V. P., 1965, The application of subcellular fractionation techniques to the study of brain function, Progr. Biophys. Mol. Biol. 15:39.

    Article  CAS  Google Scholar 

  • Whittaker, V. P., 1970, The vesicle hypothesis, in: Excitatory Synaptic Mechanisms (P. Anderson and J. K. S. Jansen, eds.), pp. 66–76, Universitetforslaget, Oslo.

    Google Scholar 

  • Whittaker, V. P., 1971, Origin and function of synaptic vesicles, Ann. NY, Acad. Sci. 183:21.

    Article  CAS  Google Scholar 

  • Zacks, S. I., and Saito, A., 1969, Uptake of exogenous horseradish peroxidase by coated vesicles in mouse neuromuscular junctions, J. Histochem. Cytochem. 17:161.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Hubbard, J.I. (1974). Neuromuscular Transmission—Presynaptic Factors. In: Hubbard, J.I. (eds) The Peripheral Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8699-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8699-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8701-9

  • Online ISBN: 978-1-4615-8699-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics