Skip to main content

Spin — Rotation Interaction

  • Chapter

Abstract

The line width arising from the rotational modulation of anisotropic interaction tensors has the general form1–3 introduced in Chapter X (see X.10.1):

$$\Delta = \left( {2/g{{\rm{\mu }}_{\rm{B}}}\surd 3} \right){\rm{T}}_2^{ - 1} = {\rm{\alpha ' + \beta }}{{\rm{m}}_{\rm{I}}} + {\rm{\gamma m}}_{\rm{I}}^2 + {\rm{\delta m}}_{\rm{I}}^3 + {\rm{\varepsilon m}}_{\rm{I}}^4$$
((1))

where α’ arises from the modulation of the g and hyperfine anisotropies. A careful test of this formula3 indicated that α’ does not always account for the mI-independent contribution to the line width and that there is in some systems a residual line width, α“, which is the deviation of α’ from the experimental value, a The viscosity and temperature dependence of β, γ, δ, and ε was found to be quite adequately accounted for by the rotational Debye correlation time (and all the coefficients α’, β,… ε varied as η /T) but at low values of η/T it was found that αex varied in a peculiar manner: when α’ was extracted the residual line width varied as T/η. The variation with η/T of αex, α’, and α“ for vanadyl acetylacetonate in toluene is illustrated in Fig.13. This kind of behaviour (α“ ∝ T/η) points to the importance of a

α as a function of η/T for vanadyl acetylacetonate in toluene3. α’ is the calculated value of α and the circles are the experimental values αex . The residual line width α“ is the diffe-ex rence between the experimental and the calculated values and is represented by the hexagons.

spin-rotation interaction as the relaxation modulation because in n.m.r. such a T/ η dependence has been widely observed4–26. It is plausible that the line-width should be proportional to T/ η because a perturbation of the type (C/ ħ)J · S will lead to a spectral density of the form (C/ ħ)2 <J2> τ J , where τJ is an angular momentum correlation time; the average value of J2 is proportional to T, and the correlation time τJ might be expected to be proportional to 1/ η because it depends inversely on the strength of the intermolecular forces, and so the overall dependence is T/ η .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Kivelson, J. Chem. Phys. 27, 1087 (1957).

    Article  ADS  Google Scholar 

  2. D. Kivelson, J. Chem. Phys. 33, 1094 (1960).

    Article  ADS  Google Scholar 

  3. R. Wilson and D. Kivelson, J. Chem. Phys. 44, 154 (1966).

    Article  ADS  Google Scholar 

  4. H.S. Gutowsky, I.J. Lawrenson and K. Shimomura, Phys. Rev. Letts. 6, 349 (1961).

    Article  ADS  Google Scholar 

  5. C.S. Johnson, J.S. Waugh and J.N. Pinkerton, J. Chem. Phys. 35, 2020 (1961).

    Article  ADS  Google Scholar 

  6. C.S. Johnson and J.S. Waugh, J. Chem. Phys. 35, 2020 (1961).

    Article  ADS  Google Scholar 

  7. M. Bloom and M. Lipsicas, Canad. J. Phys. 39, 881 (1961).

    Article  ADS  Google Scholar 

  8. J.G. Powles and D.J. Neale, Proc. Phys. Soc. 77, 739 (1961);

    ADS  Google Scholar 

  9. J.G. Powles and D.J. Neale, Proc. Phys. Soc. 78, 377 (1961);

    Article  ADS  Google Scholar 

  10. J.G. Powles and D.J. Neale, Proc. Phys. Soc. 85, 87 (1965).

    Article  ADS  Google Scholar 

  11. M. Bloom and H.S. Sandhu, Canad. J. Phys. 40, 289 (1962).

    Article  ADS  Google Scholar 

  12. J.G. Powles and D.K. Green, Phys. Letts. 3, 134 (1962).

    ADS  Google Scholar 

  13. J.S. Blicharski and K. Krynicki, Acta Phys. Polon. 22, 409 (1962).

    Google Scholar 

  14. G.W. Flynn and J.D. Baldeschwieler, J. Chem. Phys. 38, 226 (1962).

    Article  ADS  Google Scholar 

  15. P.S. Hubbard, Phys. Rev. 131, 1155 (1963).

    Article  ADS  Google Scholar 

  16. J.H. Rugheimer and P.S. Hubbard, J. Chem. Phys. 39, 552 (1963).

    Article  ADS  Google Scholar 

  17. K. Krynicki and J.G. Powles, Phys. Letts. 4, 260 (1963).

    ADS  Google Scholar 

  18. K.F. Kuhlmann and J.D. Baldeschwieler, J. Chem. Phys. 43, 572 (1965).

    Article  ADS  Google Scholar 

  19. P.S. Hubbard, J. Chem. Phys. 42, 3546 (1965).

    Article  ADS  Google Scholar 

  20. G.A. deWit and M. Bloom, Canad. J. Phys. 43, 986 (1965).

    Article  ADS  Google Scholar 

  21. R.H. Faulk and M. Eisner, J. Chem. Phys. 44, 2926 (1966).

    Article  ADS  Google Scholar 

  22. A.S. Dubin and S.I. Chan, J. Chem. Phys. 46, 4533 (1967).

    Article  ADS  Google Scholar 

  23. S.I. Chan, J. Chem. Phys. 47, 1191 (1967).

    Article  ADS  Google Scholar 

  24. M.K. Ahn and C.S. Johnson, J. Chem. Phys. 50, 641 (1969).

    Article  ADS  Google Scholar 

  25. J. Jonas and T.M. DiGennaro, J. Chem. Phys. 50, 2392 (1969).

    Article  ADS  Google Scholar 

  26. T.E. Bull and J. Jonas, J. Chem. Phys. 52, 1978 (1970).

    Article  ADS  Google Scholar 

  27. T.E. Bull, J.S. Barthel and J. Jonas, J. Chem. Phys. 54, 3663 (1971).

    Article  ADS  Google Scholar 

  28. D.E. O’Reilly, E.M. Peterson, D.L. Hogenboom and C.E. Scheie, J. Chem. Phys. 54, 4194 (1971).

    Article  ADS  Google Scholar 

  29. A.R. Edmonds, Angular momentum in quantum mechanics, Princeton University Press (1957).

    MATH  Google Scholar 

  30. B.R. Judd, Operator techniques in atomic spectroscopy, McGraw-Hill, New York (1963).

    Google Scholar 

  31. P.W. Atkins, Adv. in Molec. Relaxation Processes, in press.

    Google Scholar 

  32. R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

    Article  ADS  Google Scholar 

  33. P.W. Atkins and J.N.L. Connor, Mol. Phys. 13, 201 (1967).

    Article  ADS  Google Scholar 

  34. P.W. Atkins and D. Kivelson, J. Chem. Phys. 44, 169 (1966).

    Article  ADS  Google Scholar 

  35. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. R.F. Curl, Mol. Phys. 9, 585 (1965).

    Article  ADS  Google Scholar 

  37. R. Wilson and D. Kivelson, J. Chem. Phys. 44, 4445 (1966).

    Article  ADS  Google Scholar 

  38. R.E.D. McClung and D. Kivelson, J. Chem. Phys. 49, 3380 (1968).

    Article  ADS  Google Scholar 

  39. G. Nyberg, Mol. Phys. 12, 69 (1967);

    Article  ADS  Google Scholar 

  40. G. Nyberg, Mol. Phys. 17, 87 (1968).

    Article  ADS  Google Scholar 

  41. L. Burlamacchi, Mol. Phys. 16, 369 (1969).

    Article  ADS  Google Scholar 

  42. P.W. Atkins, A. Horsfield and M.C.R. Symons, J. Chem. Soc. 5220 (1964).

    Google Scholar 

  43. J.Q. Adams, J. Chem. Phys. 45, 4167 (1966).

    Article  ADS  Google Scholar 

  44. R.G. Gordon, J. Chem. Phys. 44, 1830 (1966).

    Article  ADS  Google Scholar 

  45. R.E.D. McClung, J. Chem. Phys. 51, 3842 (1969).

    Article  ADS  Google Scholar 

  46. A. Abragam, The principles of nuclear magnetism, Clarendon Press, Oxford (1961).

    Google Scholar 

  47. P. Debye, Polar molecules, The Chemical Catalog Co. Inc., New York 1929.

    MATH  Google Scholar 

  48. N. Bloembergen, E.M. Purcell and R.V. Pound, Phys. Rev. 73, 679 (1948).

    Article  ADS  Google Scholar 

  49. W.H. Furry, Phys. Rev. 107, 7 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. R.E.D. McClung, Ph.D. Thesis, U.C.L.A. (1967).

    Google Scholar 

  51. D. Kivelson, M.G. Kivelson and I. Oppenheim, J. Chem. Phys. 52, 1810 (1970).

    Article  ADS  Google Scholar 

  52. J.H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).

    Article  ADS  MATH  Google Scholar 

  53. R. Zwanzig, Lectures in theoretical physics (Vol. III), Interscience, New York (1961).

    Google Scholar 

  54. H. Mori, Prog. Theoret. Phys. 34, 399 (1965).

    Article  ADS  Google Scholar 

  55. B.J. Berne, J.P. Boon and S.A. Rice, J. Chem. Phys. 45, 1086 (1966).

    Article  ADS  Google Scholar 

  56. R. Poupko, H. Gilboa, B.L. Silver and A. Loewenstein, in press.

    Google Scholar 

  57. R.J.C. Brown, H.S. Gutowsky and K. Shimomura, J. Chem. Phys. 38, 76 (1963).

    Article  ADS  Google Scholar 

  58. P.W. Atkins, Mol. Phys. 17, 321 (1969).

    Article  ADS  Google Scholar 

  59. P.W. Atkins, A. Loewenstein and Y. Margalit, Mol. Phys. 17, 329 (1969).

    Article  ADS  Google Scholar 

  60. J.E. Anderson, J. Chem. Phys. 47, 4879 (1967).

    Article  ADS  Google Scholar 

  61. S.H. Glarum and J.H. Marshall, J. Chem. Phys. 46, 55 (1967).

    Article  ADS  Google Scholar 

  62. M. Rotenberg, R. Bivins, N. Metropolis, J.K. Wooten, The 3j- and 6j-symbols, Technology Press, M.I.T. (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Atkins, P.W. (1972). Spin — Rotation Interaction. In: Muus, L.T., Atkins, P.W. (eds) Electron Spin Relaxation in Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8678-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8678-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8680-7

  • Online ISBN: 978-1-4615-8678-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics