Advertisement

A Survey of Nuclear Level Density Theories

  • Claude Bloch

Abstract

The theory of nuclear level density is about as old as nuclear physics itself. Actually, many features of the models used in present days are already found in the famous article published by H.A. Bethe in 1937[1]. To a considerable extent, the theory of nuclear level density rests upon models which describe nuclei as made of independent objects, which may be nucleons or quasi-particles. In such a model, the evaluation of the level density is essentially a combinatorial problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    – H.A. BETHE; Rev. Mod. Phys. 9, 69 (1937)ADSzbMATHCrossRefGoogle Scholar
  2. 2).
    – G.E. UHLENBECK and van LIER; Physica 4, 531 (1937)ADSCrossRefGoogle Scholar
  3. 3).
    – C. BLOCH; Phys. Rev. 93, 1094 (1954)ADSzbMATHCrossRefGoogle Scholar
  4. 4).
    – N. ROSENZWEIG; Phys. Rev. 108, 817 (1957); Nuovo Cimento 43, 227 (1966)ADSCrossRefGoogle Scholar
  5. 5).
    – P. KAHN and N. ROSENZWEIG; Phys. Rev. 187, 1193 (1969)ADSCrossRefGoogle Scholar
  6. 6).
    – HIROSHI BABA; Communication 6.2Google Scholar
  7. 7).
    – M. BÖHNING; Communication 6.7Google Scholar
  8. 8).
    – M. VONACH, R. SCHANTL and M. BÖHNING; Communication 6.6Google Scholar
  9. 9).
    – See, for instance, I. Kanestrøm; Nucl. Phys. 83, 380 (1966) A109, 625 (1968)CrossRefGoogle Scholar
  10. 10).
    – C. BLOCH in Summer School of Theoretical Physics, Les Houches 1968 ed. C. de Witt and V. Gillet (Gordon and Breach, New York 1969)Google Scholar
  11. 11).
    – M. BÖHNING; Nucl. Phys. A152, 529 (1970)ADSGoogle Scholar
  12. 12).
    – F.C. WILLIAMS; Nucl. Phys. A166, 231 (1970)ADSGoogle Scholar
  13. 13).
    – R. BALIAN; Nucl. Phys. 13, 594 (1959)zbMATHCrossRefGoogle Scholar
  14. 14).
    – V. CANUTO; Nuovo Cimento 28, 742 (1962) M. SANO AND S. YAMASAKI; Prog. Theor. Phys. 29, 397 (1963) D. ZIVANOVIC; Fizika, 2, 177 (1970)Google Scholar
  15. 15).
    – L.G. MORETTO; Communication 6.1Google Scholar
  16. 16).
    – See, for instance, M.L. Mehta, Random Matrices, Acad. Press, New York (1967)zbMATHGoogle Scholar
  17. 17).
    – J.B. FRENCH and S.S.M. WONG; Phys. Lett. 33B, 449 (1970) O. BOHIGAS and J. FLORES; Phys. Lett. 34B, 261 (1971)ADSGoogle Scholar
  18. 18).
    – A. GERVOIS; Communication 6.14Google Scholar
  19. 19).
    – C. BLOCH and C. DE DOMINICIS; Nucl. Phys. 7, 459 (1958) C. BLOCH in Studies in Statistical Mechanics, ed. J. de Boer and G.E. Uhlenbeck, (North-Holland) (1965)zbMATHCrossRefGoogle Scholar
  20. 20).
    – R. BALIAN and C. BLOCH; Ann. of Physics (in the press) see also R. Balian and C. Bloch; Ann. of Physics, 60, 401 (1970); 64, 271, (1971).Google Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • Claude Bloch
    • 1
  1. 1.GEN Saclay91 - Gif-sur-YvetteFrance

Personalised recommendations