Skip to main content
  • 97 Accesses

Abstract

In the final analysis, all recording devices are sampling devices, simply because they are imperfect. An acoustic receiver cannot be made infinitely small or be capable of following all rates of amplitude variation; film cannot be made with infinitely small grain size. Therefore, any detection and recording system can be considered to be a sampling system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27:379, 623 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Gabor, Light and information, in Progress in Optics, Vol. 1, E. Wolf (ed.), North-Holland Pub. Co., Amsterdam, p. 111 (1964).

    Google Scholar 

  3. H. J. Landau, Sampling, data transmission, and the Nyquist rate, Proc. I.E.E.E. 55(10):1701 (1967).

    Google Scholar 

  4. D. P. Peterson and D. Middleton, Sampling and reconstruction of wavenumberlimited functions in N-dimensional Euclidean spaces, Inf. and Cont. 5:279(1962).

    Article  Google Scholar 

  5. D. A. Linden, A discussion of sampling theorems, Proc. I.R.E. 47:1219(1959).

    Article  Google Scholar 

  6. L. Brillouin, Wave Propagation in Periodic Structures, 2nd Ed., Dover Publications, New York (1953).

    MATH  Google Scholar 

  7. J. W. Goodman, Introduction to Fourier Optics, McGraw Hill, p. 48 (1968).

    Google Scholar 

  8. A. F. Metherell and S. Spinak, Acoustical holography of nonexistent wavefronts detected at a single point in space, Appl. Phys. Lett. 13:22(1968).

    Article  ADS  Google Scholar 

  9. B. P. Hildebrand, Information content of holograms and its relationship to scanning, Internal Report No. SSP-67–4, Battelle-Northwest, Richland, Washington, August 1967.

    Google Scholar 

  10. S. C. Keeton, Wavelength scaling problems in holography, Internal Report No. SSP-67–2, Battelle-Northwest, Richland, Washington, August, 1967.

    Google Scholar 

  11. A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Hill, New York, p. 141 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hildebrand, B.P., Brenden, B.B. (1972). Sampled Holograms. In: An Introduction to Acoustical Holography. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8657-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8657-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8659-3

  • Online ISBN: 978-1-4615-8657-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics