Skip to main content

Plasma Instabilities

  • Chapter
Book cover Physics of Hot Plasmas

Abstract

The subject of plasma instabilities has undergone a development in the last decade which at first sight seems chaotic. This apparent chaos is due to the rapid growth in the number of known instabilities. In a recent review by Lehnert1 thirty-one plasma instabilities are listed. Of these, all but eleven have been discovered since 1958. (When we say “discovered” we mean discovered theoretically. Many of them have not been unambiguously identified experimentally.) However, along with this growth in the number of known instabilities, there has been a growth in understanding of the relationships existing within families of instabilities. For instance, there are a number of instabilities with frequencies near the ion cyclotron frequency and its harmonics. These were discovered by different people at different times and have a variety of names, such as “anisotropy”, “loss cone”, “drift cyclotron” etc. All of these may be described in terms of emission and absorption of plasma waves by energetic particles. When the emission exceeds the absorption, the wave grows (is unstable). Conditions under which emission may exceed absorption may be achieved in various ways, such as making the distribution functions anisotropic, putting a beam through the plasma, having spatial gradients of density or temperature, etc. In a sense, all of these instabilities depend upon an “inverted population” such as one has in masers and lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Lehnert. 1967. Plasma physics. J. Nucl. Energy, C, 9, 301.

    Google Scholar 

  2. Norman Rostoker. 1966. Plasma Physics in Theory and Application, edited by W. Kunkel. McGraw-Hill, New York. XOA

    Google Scholar 

  3. A. A. Vedenov, E. P. Velikhov and R. Z. Sagdeev. 1961. Soviet Phys. Usp., 4, 332.

    Article  ADS  Google Scholar 

  4. B. B. Kadomptsev. 1966. Reviews of Plasma Physics, 2, 153, edited by M. A. Leontovich. Consultants Bureau, New York.

    Google Scholar 

  5. A. Jeffrey and T. Taniuti. 1966. Magnetohydrodynamic Stability. Academic Press, New York.

    Google Scholar 

  6. T. Northrup. 1956. Phys. Rev., 103, 1150.

    Article  ADS  Google Scholar 

  7. M. Kruskal and M. Schwarzchild. 1954. Proc. R. Soc. Lond., A, 223, 348.

    Article  ADS  MATH  Google Scholar 

  8. M. N. Rosenbluth and C. L. Longmire. 1957. Ann. Phys., N. Y., 1, 120.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. G. Schmidt. 1966. Physics of High Temperature Plasmas, Section 8–4. Academic Press, New York.

    Google Scholar 

  10. F. L. Curzon, A. Folkierski, R. Latham and J. A. Nation. 1960. Proc. R. Soc., Lond., A, 257, 386.

    Article  ADS  Google Scholar 

  11. D. J. Albares, N. A. Krall and C. L. Oxley. 1961. Physics Fluids, 4, 1033.

    Article  ADS  Google Scholar 

  12. M. S. Ioffe. 1965. In Plasma Physics. International Atomic Energy Agency, Vienna XOA

    Google Scholar 

  13. M. N. Rosenbluth, N. A. Krall and N. Rostoker. 1962. Nucl. Fusion, Suppl. Part I, 143.

    Google Scholar 

  14. J. Berkowitz, K. O. Friedrichs, H. Goertzel, H. Grad, J. Killeen and E. Rubin. 1958. Proc. Second Intern. Conf, Geneva, Vol. 31, p. 171. United Nations, New York.

    Google Scholar 

  15. T. Ohkawa and N. Rostoker. 1967 (December). Physics today, 20, 48.

    Article  ADS  Google Scholar 

  16. D. M. Meade. 1966. Phys. Rev. Lett., 17, 677.

    Article  ADS  Google Scholar 

  17. E. G. Harris. 1961. J. Nuclear Energy, C, 2, 138.

    Article  ADS  Google Scholar 

  18. G. Bekefi. 1956. Radiation Processes in Plasmas, Section 7–2. John Wiley, New York.

    Google Scholar 

  19. L. D. Landau. 1946. Fiz. Zh. (J. Physics, U.S.S.R.), 10, 25.

    Google Scholar 

  20. I. B. Bernstein, E. A. Frieman, R. M. Kulsrud and M. N. Rosenbluth. 1960. Physics Fluids, 3, 136.

    Article  ADS  Google Scholar 

  21. E. N. Parker. 1958. Phys. Rev., 109, 1874.

    Article  ADS  MATH  Google Scholar 

  22. M. N. Rosenbluth and K. Wilson. 1958. Proc. Second Intern. Conf., Geneva, 1958, Vol. 31, p. 89. United Nations, New York.

    Google Scholar 

  23. R. Z. Sagdeev and V. D. Shafronov. 1961. Soviet Phys. JETP, 12, 130.

    Google Scholar 

  24. D.B. Chang. 1963. Astrophys. J., 138, 1231.

    Article  ADS  Google Scholar 

  25. G. K. Soper and E. G. Harris. 1965. Physics Fluids8, 984.

    Article  ADS  Google Scholar 

  26. B. D. Fried and C. Conte. 1961. The Plasma Dispersion Function. Academic Press, New York.

    Google Scholar 

  27. M. N. Rosenbluth and R. F. Post. 1965. Physics Fluids, 8, 547.

    Article  ADS  Google Scholar 

  28. R. F. Post and M. N. Rosenbluth. 1966. Physics Fluids, 9, 730.

    Article  ADS  Google Scholar 

  29. G. E. Guest and R. A. Dory. 1965. Physics Fluids, 8, 1853.

    Article  ADS  Google Scholar 

  30. R. A. Dory, G. E. Guest and E. G. Harris. 1965. Phys. Rev. Lett., 14, 131.

    Article  ADS  Google Scholar 

  31. W. E. Drummond and M. N. Rosenbluth. 1962. Physics Fluids, 5, 1507.

    Article  ADS  MATH  Google Scholar 

  32. Y. Ozawa, I. Kaji and M. Kito. 1962. J. Nucl. Energy, C, 4, 271.

    Article  ADS  Google Scholar 

  33. E. G. Harris. General Atomics Report GA-5581 (unpublished).

    Google Scholar 

  34. M. N. Rosenbluth. 1965. Plasma Physics. International Atomic Energy Agency, Vienna.

    Google Scholar 

  35. B. B. Kadomptsev. 1963. J. Nucl. Energy, C, 5, 31.

    Article  ADS  Google Scholar 

  36. L. L. Rudakov and R. Z. Sagdeev. 1960. Soviet Phys. JETP, 10, 952.

    MathSciNet  Google Scholar 

  37. A. B. Mikhailovskii and A. V. Timofeev. 1963. Soviet Phys. JETP, 17, 626.

    Google Scholar 

  38. L. D. Landau and E. M. Lifshitz. 1960. Electrodynamics of Continuous Media, p. 256. Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  39. A. S. Davydov. 1965. Quantum Mechanics, Chapters 14 and 15. Addison-Wesley, Reading, Mass.

    Google Scholar 

  40. D. Pines and J. R. Schrieffer. 1962. Phys. Rev., 125, 804.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. W. E. Drummond and D. Pines. 1962. Nucl. Fusion, Suppl., 1049.

    Google Scholar 

  42. A. A. Vedenov, E. P. Velikhov and R. Z. Sagdeev. 1962. Nucl. Fusion, Suppl., 465.

    Google Scholar 

  43. L. D. Landau and E. M. Lifschitz. 1958. Statistical Physics. Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  44. G. M. Walters and E. G. Harris. 1968. Physics Fluids, 11, 112.

    Article  ADS  Google Scholar 

  45. G.M. Walters. 1967. Quantum Mechanical Theory of Non-Linear Plasma Phenomenain a Magnetic Field, University of Tennessee Thesis (unpublished).

    Google Scholar 

  46. P. A. Sturrock. 1958. Phys. Rev., 112, 1488.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. R. J. Briggs. 1964. Electron Stream Interaction With Plasmas. M.I.T. Press, Cambridge, Mass.

    Google Scholar 

  48. R. E. Aamodt and D. L. Book. 1966. Physics Fluids, 9, 143.

    Article  ADS  Google Scholar 

  49. H. L. Berk, C. W. Horton, M. N. Rosenbluth, D. E. Baldwin and R. N. Sudan 1968. Physics Fluids, 11, 365.

    Article  ADS  Google Scholar 

  50. V. V. Arsenin. 1967. Soviet Phys. tech. Phys., 12, 442.

    Google Scholar 

  51. M. Cotsaftis. Proc. Inter. Conf. on Plasma Confined in Open-Ended Geometry, 1967. (To be published.)

    Google Scholar 

  52. C. C. Cheng and E. G. Harris. 1968. Bull. Am. Phys. Soc, Ser. II, 13, 622.

    Google Scholar 

  53. C. C. Cheng and E. G. Harris (to be published).

    Google Scholar 

  54. P. M. Morse and H. Feshbach. 1953. Methods oi Theoretical Physics, p. 413. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 The Authors

About this chapter

Cite this chapter

Harris, E.G. (1970). Plasma Instabilities. In: Rye, B.J., Taylor, J.C. (eds) Physics of Hot Plasmas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8639-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8639-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8641-8

  • Online ISBN: 978-1-4615-8639-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics