Skip to main content

Plasma Dynamics

  • Chapter
  • 320 Accesses

Abstract

At very high temperatures, above 10,000°K, a gas will be ionized. The properties of an ionized gas, or plasma, differ considerably from those of a neutral gas. Hence we may consider the plasma as a fourth state of matter. The main difference between a plasma and a neutral gas is that electromagnetic forces play important roles in the dynamics of the plasma. Aside from this, the plasma behaves in a manner very similar to a gas in many flow problems. In plasma dynamics, we need to study simultaneously the electromagnetic fields and the gasdynamic field. Many new phenomena occur due to the interaction of the gasdynamic and electromagnetic forces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. I. Pai, Magnetogasdynamics and Plasma Dynamics, Springer Verlag, Vienna and New York (1962).

    MATH  Google Scholar 

  2. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co., New York (1941).

    MATH  Google Scholar 

  3. H. Hasimoto and S. Kuwabara, “Electrogasdynamics,” J. Phys. Soc. Japan 20 (5), 859 (1965).

    Article  MATH  Google Scholar 

  4. S. I. Pai, “Quasi-One Dimensional Analysis of Magnetogasdynamics. Electricity from MHD,” in: Proc. International Symposium on MHD Electrical Power Generation, Vol. I, Salzburg, Austria, International Atomic Energy Agency (1966), p. 283.

    Google Scholar 

  5. F. H. Clauser, Plasma Dynamics, Aero. & Astro. International Series of Aero. Sci. and Space Flight, Div. IX, Vol. 4, Pergamon Press, New York (1960), p. 305.

    Google Scholar 

  6. S. I. Pai, “Magnetohydrodynamics of Channel Flow,” in: Advances in Hydroscience, Vol. 3, V. T. Chow, ed., Academic Press, New York (1966), p. 63.

    Google Scholar 

  7. K. O. Friedrichs and H. Kranzer, “Notes on MHD VIII, Nonlinear Wave Motion,” NYU Report NYO 6486 (July 1958).

    Google Scholar 

  8. W. R. Sears and E. L. Resler, Jr., “Sub- and Super-Alfvenic Flows Past Bodies,” in: Advances in Aeronautical Science, Vol. 4, Pergamon Press, New York (1961), p. 657.

    Google Scholar 

  9. J. Bazer and W. B. Ericson, “Oblique Shock Waves in a Steady Two-Dimensional Hydromagnetic Flow,” in: Proc. of Symp. on Electromagnetics and Fluid Dynamics of Gaseous Plasma, Vol. IX, Interscience Publishers, New York (1961).

    Google Scholar 

  10. V. J. Roosow, “On the Flow of Electrically Conducting Fluids over a Flat Plate in the Presence of a Transverse Magnetic Field,” NACA Report 1358 (1958).

    Google Scholar 

  11. H. Hasimoto, “Magnetohydrodynamic Wakes in a Viscous Conducting Fluid,” Rev. Mod. Phys. 32, 860 (1960).

    Article  MathSciNet  Google Scholar 

  12. S. I. Pai, “Modern Aspects of Magnetofluid Dynamics (Tensor Electrical Conductivity and Multifluid Theory),” ARL Report 66-0060, Aero. Res. Lab. DAR, USAF, Wright-Patterson AFB, Ohio (1966).

    Google Scholar 

  13. A. Sherman and G. W. Sutton, “The Combined Effect of Tensor Conductivity and Viscosity on MHD Generator with Segmented Electrodes,” in: Magnetohydrodynamics, Proc. 4th Biennial Gasdynamics Symp., Northwestern Univ. Press (1962), Chapter 12.

    Google Scholar 

  14. F. Fishman, J. Lothrop, R. Patrick, and H. Petschek, “Supersonic Two-Dimensional MHD Flow,” Res. Report 39, AVCO Res. Lab. (1959).

    Google Scholar 

  15. L. P. Harris, Hydromagnetic Channel Flows, John Wiley and Co., New York (1960).

    Google Scholar 

  16. H. Alfven, “On the Existence of Electromagnetic-Hydrodynamic Waves,” Arkiv Mat. Astron. Fysik, 29B, (2) (1942).

    Google Scholar 

  17. J. Hartmann, “Hg-Dynamics I,” Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd., 15 (6) (1937); J. Hartmann and F. Lazarus, “Hg-Dynamics II,” Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd., 15 (7) (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press, New York

About this chapter

Cite this chapter

Pai, S.I. (1969). Plasma Dynamics. In: Loh, W.H.T. (eds) Modern Developments in Gas Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8624-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8624-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8626-5

  • Online ISBN: 978-1-4615-8624-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics