Skip to main content

Hypersonic Blunt-Body Gas Dynamics

  • Chapter
Modern Developments in Gas Dynamics
  • 373 Accesses

Abstract

The intent in this chapter is to present some of the methods and techniques being used in the aerospace industry to determine the flow field around a blunt body moving at hypersonic speed. In this context, attention is given primarily to presenting the more significant results obtained in recent years, and, where possible, experimental results are compared with theoretical predictions. Before discussing these methods and results, however, it is worthwhile to view the role that flow-field analysis plays in the design of a hypersonic vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. A. Schaff, “Mechanics of Rarefied Gases,” NAVORD Report 1488, Vol. 5 (February 1959).

    Google Scholar 

  2. R. F. Probstein and N. H. Kemp, “Viscous Aerodynamic Characteristics in Hypersonic Rarefied Gas Flow,” Avco, Report RR48 (December 1959).

    Google Scholar 

  3. W. D. Hayes, and R. F. Probstein, Hypersonic Flow Theory: Vol. I, Inviscid Flows, Academic Press, New York (1966).

    Google Scholar 

  4. M. D. Van Dyke, “The Supersonic Blunt-Body Problem—Review and Extension,” Aerospace Sci. 25 (8), 485–496 (August 1958).

    MATH  Google Scholar 

  5. H. Lomax, and M. Inouye, “Numerical Analysis of Flow Properties about Blunt Bodies Moving at Supersonic Speeds in an Equilibrium Gas,” NASA TR R-204 (July 1964).

    Google Scholar 

  6. P. Garabedian and H. Lieberstein, “On the Numerical Calculation of Detached Bow Shock Waves in Hypersonic Flow,” J. Aerospace Sci. 25 (8), 109–118 (1968).

    MathSciNet  Google Scholar 

  7. H. G. Webb, Jr., H. S. Dresser, B. K. Adler, and S. A. Waiter, “Inverse Solution of Blunt-Body Flow Fields at Large Angle of Attack, ” AIAA J. 5 (6), 1079–1085 (June 1967).

    Article  Google Scholar 

  8. W. W. Joss, “Application of the Inverse Technique to the Flow over a Blunt Body at Angle of Attack,” NASA CR-445 (April 1966).

    Google Scholar 

  9. R. Swigart, “Hypersonic Blunt-Body Flow Fields at Angle of Attack,” AIAA J. 2 (1), 115–117 (1964).

    Article  Google Scholar 

  10. G. E. Kaatari, “Shock Envelopes of Blunt Bodies at Large Angle of Attack,” NASA TN D-1980 (December 1963).

    Google Scholar 

  11. W. D. Hayes, “Rotational Stagnation-Point Flow,” J. Fluid Mech., 19, Part 3, 366–374 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  12. O. M. Belotserkovskii, “Flow with a Detached Shock Wave about a Symmetrical Profile,” Prikl. Matern, i Mekhan. 22(2), 206–219 (1958); translated in Appl. Math. Mech. 1958, pp. 279–296.

    MathSciNet  Google Scholar 

  13. G. Waldman, “Integral Approach to the Yawed Blunt-Body Problem,” AIAA Paper No. 65-28 presented at AIAA 2nd Aerospace Sciences Meeting, New York, 1965.

    Google Scholar 

  14. F. G. Gravalos, I. H. Edelfelt, and H. W. Emmons, “The Supersonic Flow about a Blunt Body of Revolution for Gases at Chemical Equilibrium,” in: Proceedings of the Ninth International Astronomical Congress, Vol. 1, Springer-Verlag, Berlin (1959).

    Google Scholar 

  15. S. H. Maslen, and W. E. Moeckel, “Inviscid Hypersonic Flow Past Blunt Bodies,” Aeron. Sci., 24 (9), 683–693 (1957).

    MathSciNet  Google Scholar 

  16. H. G. Webb, Jr., and D. M. Schrello, “Final Report: Flow-Field Prediction and Analysis for Project RAM—Phase II,” Space Division, North American Rockwell Corporation, SID 64 - 548 (July 1964).

    Google Scholar 

  17. I. O. Bohachevsky, and R. E. Mates, “A Direct Method for Calculation of the Flow about an Axisymmetric Blunt Body at Angle of Attack,” AIAA J., 4 (5), 776–782 (1966).

    Article  Google Scholar 

  18. L. Fox, “Numerical Solutions of Ordinary and Partial Differential Equations,” Pergamon Press, New York (1962).

    Google Scholar 

  19. G. Moretti, and M. Abett, “A Time-Dependent Computational Method for Blunt- Body Flows,” AIAA J. 4 (2), 2136–2141 (December 1966).

    Article  MATH  Google Scholar 

  20. H. G. Webb, Jr. and H. S. Dresser, “Unsteady Flow over Axisymmetric Blunt Bodies at Zero Angle of Attack,” Space Division, North American Rockwell Corporation, SD 67 - 881 (September 1967).

    Google Scholar 

  21. P. D. Lax, “Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computations,” Commun. Pure Appl. Math., 7, 159–193 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. D. Lax, and B. Wendroff, “Systems of Conservation Laws,” Commun. Pure Appl. Math. 13, 217–237 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. D. Richtmyer, Difference Methods for Initial-Value Problems, Interscience, New York (1957).

    MATH  Google Scholar 

  24. G. Moretti, and G. Bleich, “Three-Dimensional Flow around Blunt Bodies,” AIAA Paper No. 67-222 presented at AIAA 5th Aerospace Sciences Meeting, New York, January 23–26, 1966.

    Google Scholar 

  25. A. D. Wood, J. F. Springfield, and A. J. Pallone, “Chemical and Vibrational Relaxation of an Inviscid Hypersonic Flow,” AIAA J. 2 (10), 1697–1705 (October 1964).

    Article  MATH  Google Scholar 

  26. B. T. Chu, “Wave Propagation and the Method of Characteristics in Reacting Gas Mixtures with Application to Hypersonic Flow,” Wright Air Development Center, TN-57-213, ASTIA Doc. AD 118350 (May 1957).

    Google Scholar 

  27. C. W. Chu, A. F. Niemann, Jr., and S. A. Powers, “An Inviscid Analysis of the Plume Created by Multiple Rocket Engines and a Comparison with Available Schlieren Data—Part I: Calculation of Multiple Rocket Engine Exhaust Plumes by the Method of Characteristics,” AIAA Paper No. 66-651 presented at AIAA Second Propulsion Joint Specialist Conference, Colorado Springs, Colorado, June 13–17, 1966.

    Google Scholar 

  28. J. V. Rakich, “Three-Dimensional Flow Calculation by the Method of Characteristics,” AIAA J. 5 (10), 1906–1908 (October 1967).

    Article  Google Scholar 

  29. E. C. Knox, and C. H. Lewis, “A Comparison of Experimental and Theoretically Predicted Pressure Distributions and Force and Stability Coefficients for a Spherically Blunted Cone at M∞ ≈ 18 and Angles of Attack,” ARO Inc., AEDC-TR-65-234 (February 1966).

    Google Scholar 

  30. S. V. Patankar, “Heat and Mass Transfer in Turbulent Boundary Layers,” PhD thesis, Imperial College of Science and Technology, University of London (June 1967).

    Google Scholar 

  31. J. Valensi, R. Michel, and D. Guffroy, “Résultats Expérimentaux et Théoriques sur le Transfert de Chaleur au Bord d’Attaque des Ailes à Forte Flèche en Hypersonique,” AG ARD Report No. 97 (May 1965).

    Google Scholar 

  32. H. Schlichting, Boundary-Layer Theory, 6th ed., McGraw-Hill Book Co., New York (1968).

    Google Scholar 

  33. C. R. Cohen, and E. Reshotko, “Similar Solutions for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient,” NACA TR 1293 (1956).

    Google Scholar 

  34. G. L. Mellor, “Incompressible Turbulent Boundary-Layer Equations with Arbitrary Pressure Gradients and Divergent or Convergent Cross Flows,” AIAA J. 5 (9), 1570–1579 (September 1967).

    Article  Google Scholar 

  35. S. A. Waiter, and L. P. LeBlanc, “Solution of the Boundary-Layer Equation by an Implicit Variable-Step-Size Finite-Difference Technique,” Space Division, North American Rockwell Corporation, SD 68 - 635 (1968).

    Google Scholar 

  36. S. A. Waiter, and R. B. Anderson, “Solution of the Laminar Boundary-Layer Equations by an Implicit Finite-Difference Technique,” Space Division, North American Rockwell Corporation, SD 67 - 587 (September 1967).

    Google Scholar 

  37. A. Roshko, and G. J. Thomke, “Correlation for Incipient-Separation Pressure,” McDonnell Douglas Corporation, Report DAC-59800 (May 1966).

    Google Scholar 

  38. Z. Popinski, and C. F. Ehrlich, “Development Design Methods for Predicting Hypersonic Aerodynamic Control Characteristics,” Lockheed California Company, Technical Report AFFDL-TR-66-85 (1966).

    Google Scholar 

  39. W. L. Hankey, “Prediction of Incipient Separation in Shock-Boundary-Layer Separation,” AIAA J. 5 (2), 355–356 (February 1967).

    Article  Google Scholar 

  40. D. A. Needham, “A Note of Hypersonic Incipient Separation,” AIAA J. 5 (12), 2284–2285 (December 1967).

    Article  Google Scholar 

  41. D. R. Chapman, D. M. Kuehn, and H. K. Larson, “Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition,” NACA Report 1356 (1958).

    Google Scholar 

  42. G. E. Gadd, D. W. Holder, and J. D. Regan, “An Experimental Investigation of the Interaction between Shock Waves and Boundary Layers,” Proc. Royal Soc. (London) Ser. A 226, 227–253 (1954).

    Article  Google Scholar 

  43. S. M. Bogdonoff, and C. E. Kepler, “Separation of a Supersonic Turbulent Boundary Layer,” Department of Aeronautical Engineering, Princeton University, Report 249 (January 1954).

    Google Scholar 

  44. L. P. LeBlanc and H. G. Webb, Jr., “Boundary-Layer Separation in a Supersonic Stream,” Space Division, North American Rockwell Corporation, SID 61–72 (1961).

    Google Scholar 

  45. J. G. Lewis, T. Kubota, and L. Lees, “Experimental Investigation of Supersonic Laminar, Two-Dimensional Boundary-Layer Separation in a Compressible Corner with and without Cooling,” AIAA J. 6 (1), 7–14 (January 1968).

    Article  Google Scholar 

  46. N. Curie, “The Effects of Heat Transfer on Laminar Boundary-Layer Separation in Supersonic Flow,” Aero. Quart. 12 Part 4, 309–336 (1961).

    Google Scholar 

  47. E. E. Zukowski, “Turbulent Boundary-Layer Separation in front of a Forward-Facing Step,” AIAA J. 5 (10), 1746–1753 (October 1967).

    Article  Google Scholar 

  48. L. Lees and B. L. Reeves, Supersonic Separated and Reattaching Laminar Flows: I—General Theory and Application to Adiabatic Boundary Layer Shock-Wave Interactions, AIAA J. 2 (11), 1907–1920 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  49. D. R-S. Ko and T. Kubota, “Supersonic Laminar Boundary Layer along a Two-Dimensional Adiabatic Curved Ramp,” AIAA Paper 68-105 presented at 6th Aerospace Sciences Meeting, New York, 22–24 January 1968.

    Google Scholar 

  50. M. R. Dennison and E. Baum, “Compressible Free Shear Layer with Finite Initial Thickness,” AIAA J. 1 (2), 342–349 (February 1963).

    Article  Google Scholar 

  51. D. R. Chapman, “Laminar Mixing of a Compressible Fluid,” NACA Report 958 (1950).

    Google Scholar 

  52. T. Kubota and C. F. Dewey, Jr., “Momentum Integral Methods for the Laminar Free Shear Layer,” AIAA J. 2 (4), 625–629 (April 1964).

    Article  MATH  Google Scholar 

  53. B. L. Reeves and L. Lees, “Theory of the Laminar Near Wake of Blunt Bodies in Hypersonic Flow,” AIAA J. 3 (11), 2061–2074 (1965).

    Article  Google Scholar 

  54. W. H. Webb, R. J. Golik, F. W. Vogenitz, and L. Lees, “A Multimoment Integral Theory for the Laminar Supersonic Near Wake,” Proceedings of the 1965 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, California (1965).

    Google Scholar 

  55. J. Grange, J. M. Klineberg, and L. Lees, “Laminar Boundary-Layer Separation and Near-Wake Flow for a Smooth Blunt Body at Supersonic and Hypersonic Speeds,” AIAA J. 5 (6), 1089–1097 (June 1967).

    Article  Google Scholar 

  56. J. F. McCarthy, Jr., “Hypersonic Wakes,” California Institute of Technology, GALCIT Hypersonic Research Project, Memo 67 (1962).

    Google Scholar 

  57. J. F. McCarthy, Jr. and T. Kubota, “A Study of Wakes behind a Circular Cylinder at M = 5.7, ” AIAA J. 2 (4), 629–636 (April 1964).

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Kubota, “Laminar Wake with Streamwise Pressure Gradient,” California Institute of Technology, GALCIT Hypersonic Research Project, Memo No. 9 (May 1962).

    Google Scholar 

  59. W. Behrens, “The Far Wake behind Cylinders at Hypersonic Speeds: I, Flowfield,” AIAA J. 5 (12), 2135–2141 (1967).

    Article  Google Scholar 

  60. W. Behrens, “The Far Wake behind Cylinders at Hypersonic Speeds: II, Stability,” AIAA J., 6 (2), 225–232 (February 1968).

    Article  Google Scholar 

  61. W. G. Clay, M. Labitt, and R. E. Slattery, “Measured Transition from Laminar to Turbulent Flow and Subsequent Growth of Turbulent Wakes,” AIAA J. 3 (5), 837–841 (May 1965).

    Article  MATH  Google Scholar 

  62. L. N. Wilson, “Far-Wake Behavior of Hypersonic Spheres,” AIAA J. 5 (7), 1238–1244 (July 1967).

    Article  Google Scholar 

  63. L. Lees, and L. Hromas, “Turbulent Diffusion in the Wake of a Blunt-Nosed Body at Hyprsonic Speeds,” J. Aerospace Sci., 29, 976 (1962).

    MATH  Google Scholar 

  64. R. Knystautas, “Growth of the Turbulent Inner Wake behind 3-in. Diameter Spheres,” AIAA J. 2 (8), 1485–1486 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press, New York

About this chapter

Cite this chapter

McCarthy, J.F. (1969). Hypersonic Blunt-Body Gas Dynamics. In: Loh, W.H.T. (eds) Modern Developments in Gas Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8624-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8624-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8626-5

  • Online ISBN: 978-1-4615-8624-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics