Skip to main content

Mechanochemical Processes

  • Chapter
Molecules and Life

Abstract

We have examined two functions of the protein, a catalytic function (of enzymes) and a protective function (immunological). Both are related to the attainment of structural complementarity of the protein with another molecule. The possibility of forming structural complementarity, in turn, is the result of the multitude of conformations which are present in protein macromolecules. This chapter treats still another very important function of proteins, namely, mechanochemical work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Katchalsky, S. Lifson, I. Michaeli, and M. Zwick, Elementary Mechanochemical Processes, in: “Size and Shape of Contractile Polymers: Conversion of Chemical and Mechanical Energy” (A. Wassermann, ed.), Pergamon Press, Inc., New York, 1960.

    Google Scholar 

  2. V. A. Engelhardt and M. N. Lyubimova, Biokhimiya 4:716(1939);

    Google Scholar 

  3. V. A. Engelhardt and M. N. Lyubimova, Myosin and Adenosine Triphosphatase, Nature 144:668(1939);

    Article  CAS  Google Scholar 

  4. V. A. Engelhardt and M. N. Lyubimova, Biokhimiya 7:205(1942).

    Google Scholar 

  5. W. Kuhn, B. Hargitay, A. Katchalsky, and H. Eisenberg, Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks, Nature 165(4196): 514(1950).

    Article  CAS  Google Scholar 

  6. A. Katchalsky, Solutions of Polyelectrolytes and Mechanochemical Systems, J. Polymer Sci. 7(4):393(1951);

    Article  CAS  Google Scholar 

  7. A. Katchalsky, Polyelectrolyte Gels, in: “Progress in Biophysics and Biophysical Chemistry,” Vol. 4 (J. A. V. Butler and J. T. Randall, eds.), Academic Press, Inc., New York, 1954, p. 1.

    Google Scholar 

  8. W. Kuhn and B. Hargitay, Muskelähnliche Kontraction und Dehnung von Netzwerken polyvalenter Faden moleckülionen, Experientia 7:1(1951).

    Google Scholar 

  9. A. Pasynskii and V. Blokhina, Dokl. Akad. Nauk S.S.S.R. 86:1171(1952).

    Google Scholar 

  10. V. I. Vorob’ev, Some New Aspects of Mechanochemical Phenomena, Dokl. Biochem. Sect. (English Transl.) 137(1–6):58(1961).

    Google Scholar 

  11. S. Lifson, Potentiometric Titrations, Associated Phenomena, and Interaction of Neighboring Groups in Polyelectrolytes, J. Chem. Phys. 26:727(1957);

    Article  CAS  Google Scholar 

  12. S. Lifson, Neighboring Interactions and Internal Rotations in Polymer Molecules, II, J. Chem. Phys. 29:89 (1958).

    Article  CAS  Google Scholar 

  13. O. B. Ptitsyn, Vysokomolekul. Soedin. 2:463(1960).

    CAS  Google Scholar 

  14. O. B. Ptitsyn, Vysokomolekul. Soedin. 1:715(1954).

    Google Scholar 

  15. T. M. Birshtein, V. I. Vorob’ev, and O. B. Ptitsyn, Theory of Mechanochemical Phenomena, I, Biophysics (U.S.S.R.) (English Transl.) 6(5): 10(1961).

    Google Scholar 

  16. P. J. Flory, Role of Crystallization in Polymers and Proteins, Science 124:53(1956).

    Article  PubMed  CAS  Google Scholar 

  17. T. M. Birshtein, Vysokomolekul. Soedin. 4:605(1962).

    CAS  Google Scholar 

  18. R. B. Setlow and E. C. Pollard, “Molecular Biophysics,” Addison-Wesley Publishing Co., Inc., Reading, Mass, 1962.

    Google Scholar 

  19. A. Szent-Györgyi, Proteins of the Myofibril, in: “The Structure and Function of Muscle,” Vol. II (G. H. Bourne, ed.), Academic Press, Inc., New York, 1960.

    Google Scholar 

  20. V. A. Engelhardt, Usp. Sovrem. Biol. 14:177(1941).

    Google Scholar 

  21. J. Hanson and H. E. Huxley, The Structural Basis of Contraction in Striated Muscle, Symp. Soc. Exptl. Biol. 9:228(1955);

    Google Scholar 

  22. H. E. Huxley, The Contraction of Muscle, Sci. Am. 199(5): 67(1958).

    Article  PubMed  CAS  Google Scholar 

  23. H. S. Bennet, Fine Structure of Cell Nucleus, Chromosomes, Nucleoli, and Membrane, Rev. Mod. Phys. 31:297(1959).

    Article  CAS  Google Scholar 

  24. A. J. Hodge, Fine Structure of Lamellar Systems as Illustrated by Chloroplasts, Rev. Mod. Phys. 31:331(1959).

    Article  CAS  Google Scholar 

  25. J. Gergely, ed., “Biochemistry of Muscle Contraction,” Little, Brown and Co., Boston, Mass., 1964.

    Google Scholar 

  26. H.H. Weber, “The Motility of Muscle and Cells,” Harvard University Press, Cambridge, Mass., 1958.

    Google Scholar 

  27. D. M. Needham, Biochemistry of Muscular Action, in: “The Structure and Function of Muscles,” Vol. II (G. H. Bourne, ed.), Academic Press, Inc., New York, 1960.

    Google Scholar 

  28. D. Nachmansohn, The Neuromuscular Function, in: “The Structure and Function of Muscle,” Vol. II (G. H. Bourne, ed.), Academic Press, Inc., New York, 1960.

    Google Scholar 

  29. V. A. Engelhardt, Adenosine Triphosphatase Properties of Myosin, Advan. Enzymol. 6:147(1946).

    CAS  Google Scholar 

  30. B. Chance and C. M. Connelly, A Method for the Estimation of the Increase in Concentration of Adenosine Diphosphate in Muscle Sarcosomes Following a Contraction, Nature 179(4572): 1235(1957);

    Article  PubMed  CAS  Google Scholar 

  31. B. Chance and F. Jöbis, Changes in Fluorescence in a Frog Sartorius Muscle Following a Twitch, Nature 184(4681): 195(1959).

    Article  CAS  Google Scholar 

  32. G. Ulbrecht and M. Ulbrecht, Die Verkürzungsgeschwindigkeit und der Nutzeffekt der ATP-Spaltung während der Kontraktion des Fasermodells, Biochim. Biophys. Acta 11:138(1953).

    Article  PubMed  CAS  Google Scholar 

  33. A. V. Hill, The Heat of Shortening and the Dynamic Constants of Muscle, Proc. Roy. Soc. (London), Ser. B 126:136(1938);

    Article  Google Scholar 

  34. A. V. Hill, Recovery Heat in Muscle, Proc. Roy. Soc. (London), Ser. B 127:297(1939);

    Article  Google Scholar 

  35. A. V. Hill, The Mechanical Efficiency of Frog’s Muscle, Proc. Roy. Soc. (London), Ser. B 127:434(1939);

    Article  Google Scholar 

  36. A. V. Hill, Thermodynamics of Muscle, Nature 167(4245): 377 (1951);

    Article  PubMed  CAS  Google Scholar 

  37. A. V. Hill, Thermodynamics of Muscle, Brit. Med. Bull. 12:174(1956).

    Google Scholar 

  38. R. J. Podolsky, Thermodynamics of Muscle, in: “The Structure and Function of Muscle,” Vol. II (G. H. Bourne, ed.), Academic Press, Inc., New York, 1960.

    Google Scholar 

  39. M. F. Morales, Mechanisms of Muscle Contraction, Rev. Mod. Phys. 31:426(1959).

    Article  CAS  Google Scholar 

  40. . A. V. Hill, The Effect of Load on the Heat of Shortening of Muscle, Proc. Roy. Soc. (London), Ser. B 159:297(1964);

    Article  CAS  Google Scholar 

  41. A. V. Hill, The Efficiency of Mechanical Power Development During Muscular Shortening and Its Relation to Load, Proc. Roy. Soc. (London), Ser. B 159:319(1964);

    Article  CAS  Google Scholar 

  42. . A. V. Hill, The Effect of Tension in Prolonging the Active State in a Twitch, Proc. Roy. Soc. (London), Ser. B 159:589(1964);

    Article  CAS  Google Scholar 

  43. . A. V. Hill, The Variation of Total Heat Production in a Twitch with Velocity of Shortening, Proc. Roy. Soc. (London), Ser. B 159:596(1964).

    Article  CAS  Google Scholar 

  44. . C. J. Pennycuick, Frog Fast Muscle, I, J. Exptl. Biol. 41:91(1964).

    CAS  Google Scholar 

  45. A. Szent-Györgyi, “Bioenergetics,” Academic Press, Inc., New York, 1957.

    Google Scholar 

  46. J. Riseman and J. G. Kirkwood, Remarks on the Physico-chemical Mechanism of Muscular Contraction and Relaxation, J. Am. Chem. Soc. 70:2820(1948).

    Article  PubMed  CAS  Google Scholar 

  47. J. Botts and M. F. Morales, The Elastic Mechanism and Hydrogen Bonding in Actomyosin Threads, J. Cellular Comp. Physiol. 37:27(1951);

    Article  CAS  Google Scholar 

  48. M. Morales and J. Botts, A Model for the Elementary Process in Muscle Action, Arch. Biochem. Biophys. 37:283(1952).

    Article  PubMed  CAS  Google Scholar 

  49. W. Kuhn and B. Hargitay, Z. Elektrochem. 55:410(1951).

    Google Scholar 

  50. E. Wählisch, Muskelphysiologie vom Standpunkt der kinetischen Theorie der Hochelastizität und der Entspannungshypothese des Kontraktionsmechanismus, Naturwiss, 28:305,326(1940).

    Article  Google Scholar 

  51. W. T. Astbury, X-ray Studies of Muscle, Proc. Roy. Soc. (London), Ser. B 137:58(1950).

    Article  CAS  Google Scholar 

  52. Yu. I. Frenkel, Dokl. Akad. Nauk S.S.S.R. 20:129(1938);

    Google Scholar 

  53. Yu. I. Frenkel, Dokl. Akad. Nauk S.S.S.R. 9:251(1938);

    Google Scholar 

  54. Yu. I. Frenkel, Collected Papers, Vol. 3, pp. 456–458, Izd. Akad. Nauk S.S.S.R., 1959.

    Google Scholar 

  55. A. F. Huxley, Muscle Structure and Theories of Contraction, in: “Progress in Biophysics and Biophysical Chemistry,” Vol. 7 (J. A. V. Butler and B. Katz, eds.), Pergamon Press, Inc., New York, 1957, p. 255.

    Google Scholar 

  56. R. J. Podolsky, The Living Muscle Fiber, in: “Conference on Contractility, Pittsburgh, Penna, Jan. 27–30, 1960.”

    Google Scholar 

  57. L. Kh. Eidus, Biofizika 7:683(1962).

    CAS  Google Scholar 

  58. V. A. Engelhardt, Adenosine Triphosphatase Properties of Myosin, Advan. Enzymol. 6:147(1946).

    CAS  Google Scholar 

  59. M. G. Pryor, in: “Progress in Biophysics and Biophysical Chemistry,” Vol. 1 (J. A. V. Butler et al., eds.), Pergamon Press, Inc., New York, 1950, p. 216.

    Google Scholar 

  60. P. J. Flory, Crystallinity and Dimensional Changes in Fibrous Proteins, J. Cellular Comp. Physiol. 49, Suppl. 1:175(1957).

    Article  CAS  Google Scholar 

  61. P. J. Flory, Phase Changes in Proteins and Polypeptides, J. Polymer Sci. 49:105(1961).

    Article  CAS  Google Scholar 

  62. C. A. J. Hoeve and P. Flory, Evidence for a Phase Transition in Muscle Contraction, in: “Conference on Contractility, Pittsburgh, Penna, Jan. 27–30, 1960.”

    Google Scholar 

  63. F. Oosawa, S. Asabura, and T. Ooi, “Physical Chemistry of Muscle Protein ‘Actin’,” Prog. Theoret. Phys. (Kyoto), Suppl. 17(1961).

    Google Scholar 

  64. F. Oosawa and M. Kasai, A Theory of Linear and Helical Aggregations of Macro-molecules, J. Mol. Biol. 4(1): 10(1962).

    Article  PubMed  CAS  Google Scholar 

  65. S. Asakura, M. Taniguchi, and F. Oosawa, Mechano-chemical Behaviour of F-Actin, J. Mol. Biol. 7(1): 55(1963).

    Article  CAS  Google Scholar 

  66. M. V. Vol’kenshtein, Muscular Activity, Dokl. Biol. Sci. Sect. (English Transl.) 146 (1–6): 988(1963).

    Google Scholar 

  67. V. I. Vorob’ev and L. V. Kukhareva, Changes in Adenosinetriphosphatase Activity of Myosin during Deformation in a Hydrodynamic Field, Dokl. Biochem. Sect. (English Transl.) 165:327(1965).

    Google Scholar 

  68. R. E. Davies, A Molecular Theory of Muscle Contraction: Calcium-dependent Contractions with Hydrogen Bond Formation plus ATP-dependent Extensions of Part of the Myosin-Actin Cross-bridges, Nature 199(4898): 1068(1963).

    Article  PubMed  CAS  Google Scholar 

  69. Y. Tonomura and J. Yoshimura, Function of Actin in Muscle Contraction, Ann. Rept. Sci. Works, Fac. Sci., Osaka Univ. 11:67(1963).

    CAS  Google Scholar 

  70. G. M. Frank, Some Problems of the Physical and Physico-chemical Bases of Muscle Contraction, Proc. Roy. Soc. (London), Ser. B 160:473(1964).

    Article  CAS  Google Scholar 

  71. N. Kamiya, “Symposium on the Mechanism of Cytoplasmic Streaming, Cell Movement and the Saltatory Motion of Subcellular Particles,” Academic Press, Inc., New York, 1964.

    Google Scholar 

  72. S. Inoué, Motility of Cilia and the Mechanism of Mitosis, Rev. Mod. Phys. 31:402(1959).

    Article  Google Scholar 

  73. G. G. Rose, “Cinemicrography in Cell Biology,” Academic Press, Inc., New York, 1963.

    Google Scholar 

  74. N. R. Silvester and M. E. J. Holwill, Molecular Hypothesis of Flagellar Activity, Nature 205(4972): 665(1965).

    Article  PubMed  CAS  Google Scholar 

  75. V. A. Engelhardt and S. A. Burnasheva, Localization of the Protein Spermosin in Sperm Cells, Biochemistry (U.S.S.R.) (English Transl.) 22:513(1957).

    Google Scholar 

  76. D. Mazia, Mitosis and the Physiology of Cell Division, in: “The Cell: Biochemistry, Physiology, and Morphology,” Vol. 3, Meiosis and Mitosis (J. Brachet and A. E. Mirsky, eds.), Academic Press, Inc., New York, 1961.

    Google Scholar 

  77. D. Mazia, Materials for the Biophysical Biochemical Study of Cell Division, in: “Advances in Biology and Medical Physics,” Vol. IV (J. H. Lawrence and C. A. Tobias, eds.), Academic Press, Inc., New York, 1956, p. 69.

    Google Scholar 

  78. D. Mazia, SPIin: The Cell: Biochemistry, Physiology, and Morphology, Vol. 3, Meiosis and Mitosis (J. Brachet and A. E. Mirsky, eds.), Academic Press, Inc., New York, 1961, p. 77.

    Google Scholar 

  79. D. Bernai, Publ. Am. Assoc. Advan. Sci. 14:199(1940).

    Google Scholar 

  80. E. D. P. de Robertis, W. W. Nowinski, and F. A. Saez, “General Cytology,” W. B. Saunders Co., Philadelphia, Penna., 1954.

    Google Scholar 

  81. A. L. Lehninger, “The Mitochondrion: Molecular Basis of Structure and Function,” W. A. Benjamin, Inc., New York, 1964.

    Google Scholar 

  82. T. B. Kazakova and S.A. Neifakh, Mechanicochemical Activity and Permeability of the Membranes of Normal and Neoplastic Cells, Dokl. Biol. Sci. Sect. 152(1–6): 1116(1964);

    Google Scholar 

  83. T. B. Kazakova and S.A. Neifakh, Actomyosin-like Protein in Mitochondria of the Mouse Liver, Nature 197(4872): 1106 (1963).

    Article  PubMed  Google Scholar 

  84. D. E. Green and Y. Hatefi, The Mitochondrion and Biochemical Machines, Science 133:13(1961).

    Article  PubMed  CAS  Google Scholar 

  85. L. J. Opit and J. S. Charnock, A Molecular Model for a Sodium Pump, Nature 208(5009): 471(1965).

    Article  PubMed  CAS  Google Scholar 

  86. G. S. Stent, “Molecular Biology of Bacterial Viruses,” W. H. Freeman and Co., San Francisco, Calif., 1963.

    Google Scholar 

  87. V. J. Deshtsherevsky, Biofizika 13:928(1968).

    Google Scholar 

  88. M. V. Vol’kenshtein, Biochim. Biophys. Acta 180:562(1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Vol’kenshtein, M.V. (1970). Mechanochemical Processes. In: Molecules and Life. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8594-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8594-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8596-1

  • Online ISBN: 978-1-4615-8594-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics