Skip to main content

Enzyme Mechanisms

  • Chapter
Molecular Enzymology

Abstract

IN THIS Chapter WE SHALL CONSIDER THE CURRENT STATUS OF OUR knowledge and understanding of the mechanisms of several types of enzymes. We outline some experimental results that, in our opinion, have contributed most effectively to the deduction of the chemical or kinetic mechanism of the enzyme under discussion. An attempt will be made to draw out the common features of enzyme mechanism. We shall also consider catalytic criteria in terms of the evolution of enzyme catalytic power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albery, W. J. and Knowles, J. R. (1976) Evolution of enzyme function and the development of catalytic efficiency, Biochemistry, 15, 5631–5640.

    Article  Google Scholar 

  • Angelides, K. J. and Fink, A. T. (1978) Cryoenzymology of papain: reaction mechanisms with an ester substrate, Biochemistry, 17, 2659–2668.

    Article  Google Scholar 

  • Angelides, K. J. and Fink, A. L. (1979) Mechanism of action of papain with a specific anilide substrate, Biochemistry, 18, 2355–2363.

    Article  Google Scholar 

  • Bachovchin, W. W. and Roberts, J. D. (1978) Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of α-lytic protease, J. Amer. Chem. Soc., 100, 8041–8047.

    Article  Google Scholar 

  • Baker, E. N. (1980) Structure of actinidin, after refinement at 1.7 Ã… resolution, J. Mol. Biol., 141, 441–484.

    Article  Google Scholar 

  • Berger, A. and Schecter, I. (1970) The subsite specificity of papain, Phil. Trans. R. Soc., B 257, 249.

    Google Scholar 

  • Birktoft, J. J., Kraut, J. and Freer, S. T. (1976) A detailed structural comparison between the charge relay system in chymotrypsinogen and in α-chymotrypsin, Biochemistry, 15, 4481.

    Article  Google Scholar 

  • Blow, D. M. (1971) The structure of chymotrypsin, in The Enzymes, 3rd ed., vol. 3, ch. 6, Boyer, P. D. (Ed.), Academic Press, New York.

    Google Scholar 

  • Branden, C-I., Jornvall, H., Eklund, H. and Furugren, N. (1975) Alcohol dehydrogenases, in The Enzymes, 3rd ed., Boyer, P. D. (Ed.), Academic Press, New York.

    Google Scholar 

  • Chao, Y., Weisman, G. R., Sogah, G. D. Y. and Cram, D. J. (1979) Host-guest complexation. 21. Catalysis and chiral recognition through designed complexation of transition states in transacylations of amino ester salts, J. Amer. Chem. Soc., 101, 4948–4958.

    Article  Google Scholar 

  • Drenth, J., Jansonius, J. N., Koekoek, R. and Wolthers, B. G. (1971) The structure of papain, Adv. Protein. Chem., 25, 79–115.

    Google Scholar 

  • Drenth, J., Kalk, K. H. and Swen, H. M. (1976) Binding of chloromethyl ketone substrate analogues to crystalline papain, Biochemistry, 15, 3731–3738.

    Article  Google Scholar 

  • Fastrez, J. and Fersht, A. R. (1973) Mechanism of chymotrypsin. Structure, reactivity and nonproductive binding relationships, Biochemistry, 12, 1067–1074.

    Article  Google Scholar 

  • Fersht, A. R. (1974) Catalysis, binding and enzyme-substrate complementarity, Proc. Roy. Soc. Lond. B, 187, 397–407.

    Article  Google Scholar 

  • Fink, A. L. (1973) The α-chymotrypsin-catalysed hydrolysis of N-acetyl-L-tryptophan p-nitrophenyl ester in dimethyl sulphoxide at subzero temperatures, Biochemistry, 12, 1736–1742.

    Article  Google Scholar 

  • Gandour, R. D. and Schowen, R. L. (Eds.) (1978) Transition States of Biological Processes, Plenum Press, New York.

    Google Scholar 

  • Gertler, A. G., Walsh, K. A. and Neurath, H. (1974) Catalysis by chymotrypsinogen—demonstration of an acyl-zymogen intermediate, Biochemistry, 13, 1302–1310.

    Article  Google Scholar 

  • Glazer, A. N. and Smith, E. L. (1972) Papain and other plant sulphydryl proteolytic enzymes, in The Enzymes, 3rd ed., vol. 3, ch. 14, Boyer, P. D. (Ed.), Academic Press, New York.

    Google Scholar 

  • Harris, J. I. and Waters, M. (1976) Glyceraldehyde-3-phosphate dehydrogenase, in The Enzymes, 3rd ed., vol. 13, ch. 1, Boyer, P. D. (Ed.), Academic Press, New York.

    Google Scholar 

  • Hess, G. P. (1972) Chymotrypsin, chemical properties and catalysis, in The Enzymes, 3rd ed., vol. 3, ch. 7, Boyer, P. D. (Ed.), Academic Press, New York.

    Google Scholar 

  • Hollaway, M. R., Antonini, E. and Brunori, M. (1969) The ficin-catalysed hydrolysis of p-nitrophenyl hippurate, Eur. J. Biochem., 32, 537–546.

    Article  Google Scholar 

  • Hunkapiller, M. W., Smallcombe, S. H., Whitaker, D. R. and Richards, J. H (1973) Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease, Biochemistry, 12, 4732–4743.

    Article  Google Scholar 

  • Hunkapiller, M. W., Forgac, M. D. and Richards, J. H. (1976) Mechanism of action of serine proteases: tetrahedral intermediate and concerted proton transfer, Biochemistry, 15, 5581–5588.

    Article  Google Scholar 

  • Ingles, D. W. and Knowles, J. R. (1967) Specificity and stereospecificity of a-chymotrypsin, Biochem. J., 104, 369–377.

    Google Scholar 

  • Jencks, W. P. (1975) Binding energy, specificity and enzyme catalysis: the circe effect, Adv. Enzymol., 43, 219–410.

    Google Scholar 

  • Kezdy, F. J. and Bender, M. L. (1962) The kinetics of the chymotrypsin-catalysed hydrolysis of p-nitrophenyl acetate, Biochemistry, 1, 1097–1106.

    Article  Google Scholar 

  • Koehler, K. A. and Lienhard, G. E. (1971) 2-Phenylethaneboronic acid, a possible transition-state analog for chymotrypsin, Biochemistry, 10, 2477–2483.

    Article  Google Scholar 

  • Kraut, J. (1977) Serine proteases: structure and mechanism of catalysis, Ann. Rev. Biochem., 46, 331–358.

    Article  Google Scholar 

  • Lewis, S. D., Johnson, F. A. and Shafer, J. A. (1976) Potentiometric determination of ionisations at the active site of papain, Biochemistry, 15, 5009–5017.

    Article  Google Scholar 

  • Lowe, G. (1976) The cysteine proteinases, Tetrahedron, 32, 291–302.

    Article  Google Scholar 

  • Markley, J. L. and Ibanez, I. B. (1978) Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin A α , Biochemistry, 17, 4627–4640.

    Article  Google Scholar 

  • Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T. and Kraut, J. (1977) Re-examination of the charge relay system in subtilisin and comparison with other serine proteases, J. Biol. Chem., 252, 8875–8883.

    Google Scholar 

  • O’Leary, M. H. and Kluetz, M. D. (1972) Nitrogen isotope effects on the chymotrypsin-catalysed hydrolysis of N-aeetyl-L-tryptophanamide, J. Amer. Chem. Soc., 94, 3585–3589.

    Article  Google Scholar 

  • O’Leary, M. H., Urberg, M. and Young, A. P. (1974) Nitrogen isotope effects on the papain-catalysed hydrolysis of N-benzoyl-L-argininamide, Biochemistry, 13, 2077–2081.

    Article  Google Scholar 

  • Oppenheimer, H. L., Labouesse, B. and Hess, G. P. (1966) Implication of an ionising group in the control of conformation and activity of chymotrypsin, J. Biol. Chem., 241, 2720–2730.

    Google Scholar 

  • Pocker, Y. and Sarkanen, S. (1978) Carbonic anhydrase. Structure, catalytic versatility and inhibition, Advan. Enzymol., 47, 149–274.

    Google Scholar 

  • Polgar, L. (1974) Mercaptide-imidazolium ion-pair: the reactive nucleophile in papain catalysis, FEBS Lett., 47, 15–18.

    Article  Google Scholar 

  • Richards, F. M. and Wyckoff, H. W. (1971) Bovine pancreatic ribonuclease, in The Enzymes, 3rd ed., vol. 4, ch. 24, Boyer, P. D. (Ed.), Academic Press, New York.

    Google Scholar 

  • Shea, K. J., Thompson, E. A., Pandey, S. D. and Beauchamp, P. S. (1980) Template synthesis of macromolecules. Synthesis and chemistry of functionalised macroporous polydivinyl-benzene, J. Amer. Chem. Soc, 102, 3149–3155.

    Article  Google Scholar 

  • Shipton, M. and Brocklehurst, K. (1978) Characterisation of the papain active centre by using two-protonic-state electrophiles as reactivity probes, Biochem. J., 171, 385–401.

    Google Scholar 

  • Sluyterman, L. A. AE. and De Graff, M. J. M. (1969) The activity of papain in the crystalline state, Biochim. Biophys. Acta, 171, 277–287.

    Article  Google Scholar 

  • Thompson, R. C. (1974) Binding of peptides to elastase: implications for the mechanism of substrate hydrolysis, Biochemistry, 13, 5495.

    Article  Google Scholar 

  • Wharton, C. W. (1979) Synthetic polymers as models of enzyme catalysis—a review, Int. J. Biolog. Macromol., 1, 3–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 C. W. Wharton and R. Eisenthal

About this chapter

Cite this chapter

Wharton, C.W., Eisenthal, R. (1981). Enzyme Mechanisms. In: Molecular Enzymology. Tertiary Level Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8532-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8532-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8534-3

  • Online ISBN: 978-1-4615-8532-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics