Skip to main content

Indirect, Negative Heteronuclear Overhauser Effect Detected in a Steady-State, Selective 13C-{1H} NOE Experiment at Natural Abundance

  • Chapter
Advanced Magnetic Resonance Techniques in Systems of High Molecular Complexity

Part of the book series: Progress in Inorganic Biochemistry and Biophysics ((PIBB,volume 2))

  • 185 Accesses

Abstract

It has recently been shown that both selective 13C-{1H} NOE measurements (1–10) and non-selective two-dimensional (2D) NOE (11–13) (cross-relaxation) spectroscopy are promising techniques for the determination of carbon-proton distances in organic molecules in solution.

We dedicate this manuscript to the memory of Peter Kerekes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Uzawa and S. Takeuchi, Org.Magn.Reson. 11, 502 (1978).

    Article  Google Scholar 

  2. H. Seto, T. Sasaki, H. Yonehara and J. Uzawa, Tetr.Lett. 923, (1978).

    Google Scholar 

  3. K. Kakinuma, N. Imamura, N. Ikekawa, H. Tanaka, S. Minami and S. Ómura, J.Amer.Chem.Soc. 102, 7493 (1980).

    Article  Google Scholar 

  4. J.J. Ford, W.A. Gibbons and N. Niccolai, J. Magn.Reson. 47, 522 (1982).

    Google Scholar 

  5. M.F. Aldersley, F.M. Dean and B.E. Mann, J. Chem.Soc.Chem.Commun. 107, (1983).

    Google Scholar 

  6. V. Leon, R.A. Bolivar, M.L. Tasayco, R. Gonzalez and C. Rivas, Org.Magn. Reson. 21, 470 (1983).

    Article  Google Scholar 

  7. M.A. Khaled and C.L. Watkins, J.Amer.Chem.Soc. 105, 3363 (1983).

    Article  Google Scholar 

  8. N. Niccolai, C. Rossi, V. Brizzi and W.A. Gibbons, J.Amer.Chem.Soc. 106, 5732 (1984).

    Article  Google Scholar 

  9. N. Niccolai, C. Rossi, P. Mascagni, P. Neri and W.A. Gibbons, Biochem. Biophys.Res.Commun. 124, 739 (1984).

    Article  Google Scholar 

  10. M.J. Shapiro, M.X. Kolpak and T.L. Lemke, J. Org.Chem. 49, 187 (1984).

    Article  Google Scholar 

  11. P.L. Rinaldi, J.Amer.Chem.Soc. 105, 5167 (1983).

    Article  Google Scholar 

  12. C. Yu and G.C. Levy, J.Amer.Chem.Soc. 105, 6994 (1983).

    Article  Google Scholar 

  13. C. Yu and G.C. Levy, J.Amer.Chem.Soc. 106, 6533 (1984).

    Article  Google Scholar 

  14. K.E. Kövér, J. Magn.Reson. 59, 485 (1984).

    Google Scholar 

  15. In the transition-selective saturation technique, the total duration of the consecutive 90° pulses should be set to ca. 5–10 times the generally longer 13C T1 relaxation time. A heteronuclear NOE at a protonated carbon may be obtained by quasi-simultaneous irradiation of the one-bond satellites. In the case of non-protonated carbons (if the long-range satellites cannot be resolved), effective saturation may be achieved by non-coherent irradiation of the parent lines. It is our experience that the saturation technique presented here offers a better saturation/selectivity ratio than the conventional methods; however, our technique is not a prerequisite for any measurements when the selectivity is not critical.

    Google Scholar 

  16. W.P. Aue, E. Bartholdi and R.R. Ernst, J.Chem.Pys. 64, 2229 (1976).

    Article  Google Scholar 

  17. A. Bax, R. Freeman and G.J. Morris, J.Magn.Reson. 42, 164 (1981).

    Google Scholar 

  18. A. Bax and R. Freeman, J. Magn.Reson. 44, 542 (1981).

    Google Scholar 

  19. A.A. Maudsley, L. Müller and R.R. Ernst, J. Magn.Reson. 28, 463 (1977).

    Google Scholar 

  20. A. Bax, J. Magn.Reson. 53, 517 (1983).

    Google Scholar 

  21. D.M. Doddrell, D.T. Pegg and M.R. Bendall, J. Magn.Reson. 48, 323 (1982).

    Google Scholar 

  22. M.R. Bendall and D.T. Pegg, J.Magn.Reson. 53, 144 (1983).

    Google Scholar 

  23. M.H. Levitt, O.W. Sorensen and R.R. Ernst, Chem.Phys.Letters 94, 504 (1983).

    Article  Google Scholar 

  24. G. Batta and A. Liptàk, J. Chem.Soc. Chem.Commun. 368 (1985).

    Google Scholar 

  25. K.E. Kövér and P. Kerekes, Magn.Reson. in Chem., submitted.

    Google Scholar 

  26. J.H. Noggle and R.E. Schirmer, “The Nuclear Overhauser Effect” Academic Press, New York, 1971.

    Google Scholar 

  27. J.K.M. Sanders and J.D. Mersh, Progr.NMR Spectrosc. 15, 353 (1982).

    Article  Google Scholar 

  28. J.D. Mersh and J.K.M. Sanders, Org.Magn.Reson. 18, 122 (1982).

    Article  Google Scholar 

  29. J.D. Mersh and J.K.M. Sanders, J. Chem.Soc. Chem.Commun. 306 (1983).

    Google Scholar 

  30. All the NOE data mentioned in the text mean fractional enhancements; (IS-IO)/IO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Kövér, K.E., Batta, G. (1986). Indirect, Negative Heteronuclear Overhauser Effect Detected in a Steady-State, Selective 13C-{1H} NOE Experiment at Natural Abundance. In: Niccolai, N., Valensin, G. (eds) Advanced Magnetic Resonance Techniques in Systems of High Molecular Complexity. Progress in Inorganic Biochemistry and Biophysics, vol 2. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-8521-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8521-3_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-8523-7

  • Online ISBN: 978-1-4615-8521-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics